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Abstract

The work is dedicated to the problem of plane monochromatic shear wave propagation through elastic matrix com-
posite materials with a homogeneous random set of spherical inclusions. The effective field method (EFM) and quasi-
crystalline approximation are used for the calculation of phase velocity and attenuation factor of the mean wave field
propagating through the composite. The version of the method developed in the work allows us to obtain the dispersion
equation for the wave vector of the mean wave field that serves for all frequencies of the incident field, properties and
volume concentrations of the inclusions. The long- and short-wave asymptotic solutions of the dispersion equation are
found in closed analytical forms. Numerical solutions of this equation are constructed in a wide region of frequencies
that covers the long-, middle- and short-wave regions of the propagating waves. The phase velocities and attenuation
factors of the mean wave field in the composites are analyzed for various elastic properties, density and volume con-
centrations of the inclusions. Comparisons of the predictions of the method with some numerical computation of
the effective parameters of matrix composites are presented; possible errors in predictions of the velocities and attenu-
ation factors of the mean wave field in the composites are indicated and discussed.
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1. Introduction

The problem of wave propagation through heterogeneous media has a number of important applications
such as non-destructive evaluation of the microstructures of composite materials and prediction of the dy-
namic properties of composites. In this work the problem of monochromatic wave propagation through the
medium with a set of isolated spherical inclusions is considered. If the set of inclusions is random, the exact
solution of this problem cannot be found, and only various approximations are available. A version of the
effective field method (EFM) is developed in this work for the construction of such an approximate solu-
tion. This method has a long history and was successfully used in the nuclear physics, in the theory of phase
transitions for the description of various physical phenomena in the ensembles of interacting particles. An
important area of its application is the problem of wave propagation through the medium with isolated
inclusions (scatterers). The main aim of the theory in this problem is prediction of the phase velocity
and attenuation factor of the mean (coherent) wave field propagating through the inhomogeneous medium.

The EFM is based on some hypotheses about the structure of a local external field that acts on every
particle (inclusion) in the composite medium. As a rule the area of the application of these hypotheses can-
not be strictly indicated, and only comparison with experimental data or numerical solutions allow us to
point out the borders of this area. In order to understand the character of possible errors of the method
it is important to analyze its predictions in a wide region of frequencies of the incident field and for various
elastic properties, densities and volume concentrations of inclusions.

Application of the EFM to the solution of the problem of wave propagation through inhomogeneous
medium starts with the famous work of Rayleigh (1892). The hypotheses of the EFM were formulated
explicitly in the classical works of Foldy (1945), Lax (1951) and Lax (1952), where the method was applied
to the problem of scalar wave propagation through the medium with point scatterers. It was assumed in
these works that the local (effective) field that acts on every scatterer in the medium is a plane wave, and
it is the same for all the scatterers. This wave was supposed to be coincided with mean wave field (Foldy)
or proportional to the mean field (Lax). This hypothesis was called the quasi-crystalline approximation,
and in many works this name is associated with the method itself. This hypothesis reduces the solution
of the many particle problem (interaction between many particles) to a one particle problem (diffraction
of effective external field on one particle). Another version of the EFM for the case of scalar waves was
developed in the works of Waterman and Truel (1961) and Ficioris and Waterman (1964), where the effec-
tive field was assumed to be a combination of the forward and backward plane waves with the wave num-
bers of the background medium (matrix).

Application of the quasi-crystalline approximation to the problem of wave propagation through elastic
media with isolated inclusions encounters two main difficulties. Firstly, the one particle problem in this case
is diffraction of a plane monochromatic wave on an inclusion of finite sizes, and the exact solution of this
problem for an arbitrary frequency of the incident field exists only for a spherical inclusion. In the long-
wave region, where the one particle problem is quasistatic (lengths of the propagating waves are more than
the characteristic size of inclusions), the exact solution may be found for an arbitrary ellipsoidal homoge-
neous inclusion and its limit forms. In the case of inclusions of non-canonical shapes only numerical solu-
tions of the one particle problem are available.

The second difficulty in the application of the method is the procedure of averaging the detailed wave field
in the composite over the ensemble realizations of the random field of inclusions. In a number of works
where the EFM was applied to the problem of elastic wave propagation in particulate composites, the
long-wave region and spherical or cylindrical inclusions were considered (see Bose and Mal, 1973, 1974;
Datta, 1977; Datta et al., 1988, and others). The technique that was used in these works was the expansion
of the fields scattered on inclusions over eigenfunctions of the one particle diffraction problem. In the works
of Varadan et al. (1978) and Varadan and Varadan (1985) this technique was used for the analysis of wave
propagation in the middle wave length region. The main drawback of this technique is the complexity of the
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procedure of ensemble averaging. It was shown in the works of Twersky (1975, 1978) and Willis (1980) that
the technique of integral equations is a more efficient tool for the realization of the averaging procedure.

In this work we consider propagation of monochromatic shear waves in the medium with spherical inclu-
sions and develop the mathematical formalism of the EFM that serves for all frequencies of the incident
field, elastic properties, density and volume concentrations of inhomogeneities. Using this formalism we
obtain the dispersion equation for the wave number of the mean wave field in the composite, and the real
and imaginary parts of this number give us the phase velocity and attenuation factor of the mean wave field.
Explicit asymptotic solutions of the dispersion equation are found in the long- and short-wave regions;
numerical solutions of this equation are constructed in a wide region of frequencies of the incident field
and for various properties and volume concentrations of inclusions. The method is based on the hypotheses
that are close to the Lax version of the EFM. The structure of the paper is as follows.

In Section 2, we consider the integral equations of the problem of monochromatic wave propagation
through matrix composite materials. In Section 3, the main hypotheses of the EFM are formulated, and
the general scheme of the method is developed. The dispersion equation for the wave vector of the mean
wave field in the composite that serves for all frequencies of the incident field, properties and volume con-
centrations of inclusions is obtained in this section. The coefficients in the dispersion equation are expressed
via the solution of the one-particle problem (the problem of diffraction of the effective external field on an
isolated spherical particle). The solution of this problem and the final form of the dispersion equation are
presented in Section 4. In Section 5, we obtain the long-wave asymptotic solution of the dispersion equation
in an explicit analytical form. The comparisons of the predictions of the method with numerical calcula-
tions of the effective elastic constants of the composites are presented in this section. In Section 6, the
short-wave asymptotic of the solution of dispersion equation is obtained and discussed. Section 7 is dedi-
cated to the numerical solution of the dispersion equation in a wide region of frequencies that covers long-,
middle- and short-wave regions. We consider two types of inclusions that are much harder and heavier than
the matrix and much lighter and softer than the matrix. It is shown that the dispersion equation has several
branches of its solutions. The main branch may be interpreted as an acoustic (quasiacoustic) one, and some
other branches (e.g., quasioptical) may be also indicated. In the conclusion (Section 8) the area of the appli-
cation of the method is discussed.

2. Integral equations of the diffraction problem

Let us consider an infinite homogeneous medium (matrix) with elastic moduli C° and mass density p,
containing a homogeneous random set of inclusions with elastic moduli tensor C and mass density p.
The inclusions occupy region V, and V(x) is the characteristic function of this region (V(x)=1if xe V
and V(x) =0 if x € V). Here, x(x1,x,x3) is a point of the medium with Cartesian coordinates xi, x,, x3.
We study a monochromatic elastic wave of frequency w that propagates in such a medium. If the depen-
dence of time ¢ is defined by the factor exp(—iwt), the displacement field u; in the medium has the form
uix,t) = uf(x)exp(—iwt), and amplitude u,x) of this field satisfies the following integral equation (see,
e.g., Willis, 1980)

0
) =)+ [ A6l —)Ch e ()¢ 07 [ Gule = ()42 =0
g C X .
C'(x)=CV(x), C'=C-C" px)=p V), pi=p—po
Here, u?(x) is an incident field that would have existed in the matrix without inclusions under prescribed
conditions at infinity, &; = Oju; is the strain tensor, and Gy(x) is the Green function of the operator
0 ng.klal + po@*d;. For the isotropic medium with Ay, o as Lamé parameters, tensor Gy(x) takes the form
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where J;, is Kroneker’s symbol.
It follows from Eq. (2.1) that the amplitude ¢;{x) of the strain tensor in the composite medium satisfies
the equation

) = &0+ / Pt = X)Clyp (e () ¥’ + 07 / 0yGii(x — XYy (¢ ()

D’Gy

Pijk[(x) = ax—éx;
J

|(ii)(k1)' (2.3)
Here, parentheses in indices means symmetrization: T =1 (T + T).

If the incident field is a plane monochromatic wave, displacement vector {(x) and strain tensor &)(x)
take the forms
ul(x) = Ulelto™, s(.}(x) =i O(iU?)ei"O"‘,

1 1
_ 0
4o = 9oo;, Qo - qo; Xi,

where ¢ is the wave number of the incident wave in the matrix, n” is the wave normal and U % is the polar-
ization vector (go = o for longitudinal waves and gy, = f, for shear waves).

Note that the functions C'(x) and p,(x) in the right-hand side of Eqgs. (2.1) and (2.3) cut the functions
u{x) and ¢;,{x) on the region V" occupied by the inclusions. Thus, the main unknowns of the problem are the
values of these fields inside the inclusions. The fields in the matrix may be reconstructed from Egs. (2.1) and
(2.3) if the fields u,(x), ;(x) inside the inclusions are known.

(2.4)

3. General scheme of the effective field method

Let us consider a typical realization of a homogeneous random set of inclusions in the background med-
ium (matrix). Every inclusion in the composite may be considered as an isolated one in the original matrix
by the action of local external displacement u; (x) and strain ¢;;(x) fields. The fields u; (x) and &j;(x) do not
coincide with the incident fields u{(x) and & (x ) applied to the medium; u;(x) and &(x) consist of the inci-
dent fields and the fields scattered on the surrounding inclusions. If an inclusion occupies region v, the fields
inside this inclusion satisfies the integral equations that are similar to Egs. (2.1) and (2.3) (x € v)

u;(x) = u} (x) + / 0;Gu(x — x')C,l(jmnsm,,(x') dx’ + pla)Z/ Gie(x — Xy (x) d’, (3.1)

v

00(2) = &50) & [ Pl =) Chomn ) ¢ 4 10 [ 00 Gia o~ X () . (32)

v

3.1. Integral equations for the effective fields

“(x), and the fields 1" (x),

ij

Let Egs. (3.1) and (3.2) may be solved for arbitrary external fields u(x), ¢
sfﬁ( ) inside the inclusion centered at point x* may be presented in the form

u (x) = 2w (x), el (x) = A (x), (3.3)
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where /1,(.,’{‘) and Af/].‘k), are some linear operators of the solution of the diffraction problem for one inclusion
(one particle problem). It follows from Egs. (2.1) and (2.3) that the fields #,(x) and &;{x) in the medium
are expressed via the fields u;(x) and &,(x) in the form

wi(x) = ul(x) + / [0/Gik(x = X) Chip Ay () + p100% G x = X )t ()| V () (3.4)

6(0) =) + [ [P =) Cis A () + 070G — )t () V) & (3.5)

Here, functions A&’ (x) and Ayu;(x) coincide with AW e (x) and A,E];)u}*(x) inside the k-th inclusion

. (k) mnrs rs

(k=1,2,3,...). Linear operators A*) "and /)’ may be presented in the forms of some integral operators

mnrs

AL 0) = [ A 565 ) . (3:6)
i) = [ 2w ar, ()
Uk

where A% (x,x') and 29 (x,x’') are generalized functions known from the solution of the one particle prob-
lem. Points x and x’ belong to the same domain v, because the fields inside k-th inclusion depend only on
the values of the local external fields in the region vy.

The equations for the local external fields »; (x) and ¢ (x) that act on an arbitrary (k-th) inclusion follow
from their definitions as a sum of the incident fields and the fields scattered on surrounding inclusions and

take the forms

ui(x) = ul(x) + / [6jG,-k(x — x’)C,lcjmnAm,,msfs(x/) + p1@0*Gy(x — x')/lk,u}“(x/)} V (x;x") dx’, (3.8)
£(x) = g(x) + / [P it (8 = X) iy A, () + 0?0, G — x')}~k1“7(x/)} V(x;x) dx’. (3.9)
Here, V(x;x’) is the characteristic function (with argument x’) of region V', defined by the equation
Ve=Ju ifxeu,. (3.10)
i#j

As it follows from Eq. (3.10) function V(x;x’) is equal to zero if points x and x’ are inside the same inclu-
sion. Thus, the integral terms in Egs. (3.8) and (3.9) are the sums of the fields scattered on all the inclusions
except the one that occupies region v; if x € v;.

3.2. The main hypotheses of the EFM and average procedure

It is seen from Egs. (3.4), (3.5), (3.8) and (3.9) that the local external fields u}(x) and &, (x) may be con-
sidered as the main unknowns of the problem. For random sets of inhomogeneities u}(x) and ¢, (x) are ran-
dom functions. The main hypotheses of the EFM concern the structure of the fields «;(x) and ¢ (x). Let us
introduce the first of hypothesis H1.

H1. The fields u}(x) and ¢ (x) are plane waves in the vicinity of every inclusion.

This hypothesis allows us to construct operators A and / in Egs. (3.6) and (3.7) from the solution of the
problem of diffraction of a plane monochromatic wave on an isolated inclusion (see Section 4).

Let us find the mean wave field (u{x)) in the composite medium. After averaging Eq. (3.4) over the
ensemble realizations of the random sets of inclusions, we obtain
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(:(x)) = u(x) + / [0/Gik(x = X) i (At )V () + p10?Gilx = ) (At} (¥)V () | ¥
(3.11)

A similar equation may be written for the mean value of the strain field (¢;(x)) after averaging of Eq.
(3.5).
For the next step we have to introduce the second hypothesis of the EFM.

H2. Random local external fields u; (x) and &j;(x) acting on an inclusion v are statistically independent on
the elastic properties, density and radius of this inclusion.

Thus, it is assume in this hypothesis that the local external field acting on an arbitrary inclusion in the
composite depends mainly on global statistical characteristics of the random set of inhomogeneities, and it
is not sensitive to the properties of individual inclusions.

Hypothesis H2 allows us to write the mean values of the functions A;;,¢},(x)V (x) and Azuj(x)V (x) in the
right-hand side of Eq. (3.11) in the forms

<Aijk/8/tz(x)V(x)> = <V(x) z/kl><‘5k1 \x> (3.12)

(At (x)V (x)) = (V(x) A ) uig (x) ). (3.13)

Here, (- |x) is averaging under the condition that point x belongs to the region ¥ occupied by the inclu-
sions. It follows from Egs. (3.11)—(3.13) that the mean wave fields (u{x)) takes the form

((0) =) +p [ [0Galx ~ ) Cumn Al () + 9100 Gl = )85 ()] 0. (3.14)

&, (0) = (e ()le), it (x) = (up (x)x). (3.15)

where p is the volume concentration of inclusions. The fields &) (x) and &’ (x) are the mean external fields
that acts on inclusions in the composite medium. Farther, they will be called effective external fields. Oper-
ators Agk, and /l?j in Eq. (3.14) are defined by the equations

<A,:/-k,8,*€/(x)V(x)> :/<V(xl)/1iikl(xvxl)>ék1( ") dx’ p//l,/kl(x )§Z/(x')dx'=p/13k1§;t/(x)7 (3.16)

a0V 0) = [ (V) aale i) =p [ Al =) &Y = prii o). (3.17)

The kernels A?/.k, (x —x') = (A (x,x")|x) and /lg.(x —x') = (4;(x,x')|x) of the operators A° and 2° depend
on the difference x — x’ for a homogeneous random set of inclusions.

In order to find the means #; (x) and &;(x) in Eqgs. (3.14)~(3.17) let us average Eqs. (3.8) and (3.9) over
ensemble realizations of the random field of inclusions by the condition that x € V'

() =020 + [ [0 G0n 6 = ¥)Cly o’ 0V (i) + 9100 Gt ()1 () )| e,
(3.18)

5)(0) = 65000+ [ [Poae =) Ch (Aot 6OV (5 )) + 91070 G () . ) 0.
(3.19)
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Using hypothesis H2 the means in the right-hand sides of these equations may be presented in the forms

<Amnrs8:s(x/) V(x; xl) ) = p{Amnrsty, (x/) |xlv x) P(x, x/), (3.20)

(Agarty (X )V (2, X" |x) = plAgaut; (x") X, x) P (x, X)), (3.21)
n1 x;x)|x

¥ (x,x’) —p(V( ;) [x). (3.22)

Here, function ¥(x,x") depends only on geometrical properties of the random set of inclusions. If this set is
homogeneous and isotropic, ¥(x,x’) is a function of only |x — x’'|: P(x,x’) = ¥(|x — x’|). The properties of
this function follows from Egs. (3.10) and (3.22): ¥(x) is a continuous function and
Y(0)=0, Y(oo)=1. (3.23)
As it is seen from Egs. (3.18)~(3.21) the conditional means #; (x) = (u; (x)|x) and &(x) = (&/,(x)|x) are ex-
pressed via more complex conditional means (A u;(x')[x',x) and (A;¢;,(x")|x',x) (the averaging under the
condition that points x and x’ belong to V). These two-points conditional means can be expressed via three-
point similar means using the same Eqgs. (3.8) and (3.9), etc. (If we average Eqgs. (3.8) and (3.9) by the con-
ditions x,x’ € V, in the right-hand sides of these equations appear the means of the functions u;(x”) and
&;(x") under the condition that x”,x’,x € V). As a result we go to an infinite chain of equations that con-
nects all the multipoint conditional means of the effective fields u; (x) and &j;(x). In order to obtain a closed
system of equations for the means (u; (x)|x) and (ej;(x)|x) one has to accept an additional hypothesis H3
concerned the properties of the conditional means. The simplest one is called the quasi-crystalline approx-
imation, and according to this hypothesis we accept

(Aijuagy () x) = (A, () X') = Ay, (), (3.24)

(i () ) = (sl ()W) = 0. (3.25)
Here, Agk] and /), are some non-random operators that will be constructed below from the solution of the
one particle problem. For the solution of the problem of scalar wave propagation through the medium with
point scatterers a similar hypothesis was formulated by Lax (1951, 1952).

Thus, hypothesis H3 may be formulated as follows.

H3. The means of the wave fields u;(x") = Auj(x") and ¢;(x’) = A;uef;(x") under the condition that points
x" and x are inside different inclusions coincide with the same means by the condition that only point x’ is
inside of an inclusion (x’ € V).

This assumption closes the chain of the equations for many-point conditional means of the effective
fields at the first step. Egs. (3.18) and (3.19) together with Egs. (3.20)—(3.22), (3.24) and (3.25) give us
the following system of integral equations for the fields &;,(x) and i} (x)

i (x) = u(x) + p / [0/Gik(x = X)Clypy A () + 1P Gislx = X)) 205 () | W(x = X)dv, (.26

&(x) = e5(x) +p/ [Py (¢ = %) Chi A () + p10°0, G (x — x') 2t} (V) P (x =¥ ) d'. (3.27)

After excluding the incident fields «(x) and eg.(x) from these equation and Eq. (3.11) and similar equa-
tion for (g;) we obtain

70 = (1))~ [ 3606 = ¥)Cly (A28 W) + 102Gl = ) (2 ()] 0l — ) 0
(3.28)
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%@%ﬂ%@»—g/PW@—#X%WM%JD@U+m&@ﬁm@—ﬂU%m@ﬂ¢@—fN%
(3.29)

B(x) =1 — ¥(x). (3.30)

Note that function @(x) is equal to zero outside a finite vicinity of the origin (x = 0). The size of this
vicinity has the order of the correlation radius of the random set of inclusions.

3.3. The equations for the effective fields in the case of shear wave propagation

In what follows we will consider the case of shear incident wave ug(x) = Upmexp(ifion - X), where n is
wave normal, f, is the wave number of the waves in the matrix, U, is the amplitude of the incident field,
and vectors m and n are orthogonal. For a homogeneous and isotropic random set of inclusions, the mean
fields (u(x)) and (e;{x)) are also plane shear waves with the wave number f., wave normal n and polari-
zation vector U = Um,

(ui(x)) =mUexp(if,n-x), (&;(x)) =ip,num;U exp(if,n-x). (3.31)

Because (3.28), (3.29) are equations in convolutions the effective external fields #; (x) and &j(x) are also
plane waves that may be presented in the forms

i (x) = mUY exp(if,n - X), (3.32)
&,(x) =& exp(ifn-x), & =ifnumyU:. (3.33)

Note that amplitudes U* and U? in these equations do not coincide because, generally speaking, the con-
ditional mean of a derivative does not coincide with the derivative of a conditional mean
((0ju; (x)|x) # 0;(u; (x)[x)).

Operators A° and 2° in Eqgs. (3.16) and (3.17) are defined from the solution of the one particle problem
(3.1), (3.2). If we change the fields u;(x) and &j;(x) in Egs. (3.1) and (3.2) for their mean values #; (x) and
é;}(x), the field u/x) inside region v with the center at point x, takes the form

N . . 50 A%
ui(x) = 2 [m U exp(if,n - (x — Xo)) exp(if,n - Xo)| = Ay (x — xo) ity (x),
F(2) = Zylexp(if.n - z)] exp(—if.n - 2), (3.34)
and the solution of Eq. (3.2) for the field ¢;(x) in v follows from Eq. (3.34) in the form
';0 in . " . ~0 o
gi(x) = [6(,«4/)k(x — xo)} ﬁ—l (iB,mmUS exp(if,n - X)) + iy 01y (i€ (%)
0

;mw—m%w,A%@=h%Mﬂm%+%@w (3.35)
Here, functions ;l?k (z) and /~1?/.k, (z) do not depend on the position of the center of the inclusion x, and can be
found from the solution of the one-particle problem for an inclusion centered at point x :~%'

Let us introduce functions /j (x) and A7, (x) that coincide with functions 2, (x — x*) and 4, (x — x*) in-
side the region v, (k=1,2,3,...) and equal to zero in the matrix. Note that functions 2 (x) and A;’jkl(x)
compose stationary random fields. Using these functions the fields u/x) and ¢;{(x) inside inclusions may
be written in the form

wx) = PR, o) = A (05, xeV. (3.36)
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Now the action of the operators Ag.k, and /), on the effective fields &,(x) and i} (x) in Eqgs. (3.24)~(3.27)
may be presented in the forms

Agkz‘g/tl( ) = (g (x)|x) = (A;}kl(x)|x>§,tl(x) = Z?jkléltz(x)v (3.37)

Dot (x) = (et () ) = (25, () ) (x) = Zyd (x), (3.38)

—€ 1 ~0 Su 1 0

Ay = w\/ Ayy(x)dx ), Ay = w\/ Ay (x)dx ). (3.39)
Here, Auk, and ;hk are constant tensors for any homogeneous random field of inclusions (The averaglng in

these equations is taken over the ensemble distribution of sizes of the inclusions). Hence, operators A% and
% are products with constant tensors A, s and -
Finally, Eq. (3.11) for the mean wave field (u,(x)) in the composite and Eqgs. (3.26) and (3.27) for the

mean effective fields #;(x) and &(x) take the forms

&

() =) +p [ [0Galr ~ ) Clu T () + pr Gl — ) 2 ) (3.40)
70 = ) = [ [3/Gu0x = )€l Ao 80) 4 02 Galy — )i (00| 06— ) &, (341

500 = (600)) = [ [Poux = X)Cly o) + 9107006 = XA )]0 =) &Y. (3:42)

Egs. (3.40)(3.42) are equations in convolutions. Therefore, the Fourier transform of these equations
gives us the following system of linear algebraic equations with respect to the Fourier transforms of the
unknown effective fields

(ui(k)) = “?(k) +p|:ikaik(k)Ck/nznAmnrv &, (k) + plszik<k)zZlﬁ7<k)}7 (3.43)
i} (k) = (k) = p [T (K)Cly () + 91 G it (1) (3.4
B0 = (0(8)) = [P (k) Clipn () + 91T () it (). (3.45)

Here, k is a point of k-space of Fourier transforms, G;(k) is the Fourier transform of the Green function
G (x) defined in Eq. (2.2).
-1
Gy (k) = [L?k(k)] ) L?k(k) = Cg'k/k/‘kl — P d.

(We denote Fourier transform of the functions by the same letter with argument k). The functions G,‘.f; (k),
(k), Pgy, (k) in Egs. (3.43)«(3.45) are

Gulk) = / Gur(x) @(x)e™™ dx, T (k) / 0,Gu(x)B(x)e™ ™ dx, Pl (k) = / Pijes (x) D(x)e™> d.

[
Fljk

(3.46)
Eqgs. (3.44) and (3.45) may be written now in the forms
Tiwa (k)& (k) + tye (k)i (k) = (ui(k)), (3.47)

i (K& () + e ()it (k) = (i (k) (3.48)
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where
Tiwa(k) = pIl(K)Clp s (k) = i + pp ? G (k) Ly, (3.49)
M (k) = Liju +pP$rs(k)CiquZ;qk[7 ik (k) :pplwzrgj)r(k)zjk' (3.50)

Taking into account Egs. (3.31)—(3.33) we can write for the Fourier transforms of the functions in Eq.
(3.47) and (3.48)

(we(k)) = 2n)’ mUS(k + pon),  (g;(k)) = (2n)*iB,nem,Ud(k + f.n), (3.51)

i) (k) = 2n)’mU"s(k + B,m), & (k) = (2n)*iB.nem; US(k + B.n), (3.52)
where o(k) is Dirac’s delta-function. From these equations and Egs. (3.47) and (3.48) follows the system
connected scalar amplitudes U, U* and U®

T(B)UL +1(BIUL = U, (3.53)

o(p)us +=(B)U: = U. (3.54)
Here, scalar coefficients 7, ¢, Il and & are

T(B,) =1p.mTw(B)mn;, t(B,) = mity(B,)my, (3.55)

H(:B*) = niijijkl(,B*)mknh TL(,B*) = %nimjnijk(ﬁ*)mh (356)

and functions TyA f.), talf+), Hud f.) and m;p(B.) are defined in Eqgs. (3.49) and (3.50), where vector k has
to be replaced with vector (—f.n).
Resolving the system of equations (3.53) and (3.54) with respect to U? and U* we obtain

1 1
Ui:K(t—n)U, UZ:X(H—T)U, A=1t—Tn. (3.57)
Let us multiply both parts of Eq. (3.43) with function L) (k) = C?jk,k,-k, — pow*dy. Taking into account
the equations

Ly (K)Gy(k) = by, Ly (00 (k) = 0 (3.58)
we obtain
L, (k) () = i€, A () + 9101 ()| = 0. (3.59)

Now with the help of Egs. (3.51), (3.52), (3.57) and (3.58) we can transform Eq. (3.59) into the dispersion
equation for the wave number f, of the mean wave field. This equation may be written in the standard form

Bl (B.) — o’p.(B.) =0, (3.60)
Nx(ﬂ*) = Uy +]7TMZY(t - 7'[?)7 ZC = minjzgklmknl, (361)

Eq. (3.60) is the equation for the unknown effective wave number . of the mean shear wave propagating
through the composite medium. Note that A and A" are functions of the wave number f,, and these func-
tions have to be found from the solution of the one particle problem (3.1), (3.2). The phase velocity and the
attenuation factor of the mean wave field are connected with the wave number S, by the equations
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)
v, = Re(5) y = Im(p,). (3.63)

Note that dispersion equation (3.60) may be obtained by the following hypothesis.

Every inclusion in the composite behaves as an isolated one in the original matrix by the action of external
Jields u; (x) and &,(x). These fields are plane waves that are the same for all the inclusions.

This hypothesis is equivalent to the hypotheses H1, H2, H3, but it does not indicate the ways of possible
improvements of the obtained solution in the framework of the EFM. For instance, the local external field
may be chosen more complex than a plane shear wave, and it changes hypothesis H1. Hypothesis of the
quasi-crystalline approximation (H3) may be also changed for a more complex one (see, e.g., Kanaun,
2003), etc.

4. Solution of the one particle problem

Let us consider a shear wave field u*(x) with the wave vector f5.e; and polarization vector e; (e; is a unit
vector of x-axis). This field may be presented in the form of a series of spherical vector functions (see
Eringen and Suhubi, 1975)

i s = i"2n+1) i

u (x) = eleﬁ* T = ;:l n(n + 1) I:M(l)ln(‘x> - EN(l)ln(x):|7 (41)
P! (cos 0) dP!(cos0) .
1 — 0 - n _ a?q n

MOln(‘x) € Jn(ﬁ*r) Sil’l 0 Cos @ € Jn(ﬁ*r) dg s @, (42)

. n(n+1) . APl (cos 0) P!(cos0) . 1d, .

o P n a0l n - .

N ) = 20 o ) cos -+ [ 08D o oo Pal0080) g 11

(4.3)

Here, r = |x|, €’,e’,e? are the basic vectors of the spherical coordinate system (r, 0, ¢) with polar axis x3,
Jju(2) is the spherical Bessel function and P! (cos 0) is the Legendre function of order n.

The one particle problem of the EFM is the problem of diffraction of plane wave (4.1) on a spherical
inclusion with elastic moduli A, u and density p embedded in the matrix material with the dynamic charac-
teristics Ao, o, po. If the inclusion has radius a and is centered at point x = 0, integral equation (3.1) is equiv-
alent to the following system of partial differential equations

WA, + (i + @O, + o, = (B — B)el explifxs), r<a, (44)

B! + (2o + 10)0Dey + po’ sl = po(By — B2)e} exp(if.xs), r>a. (45)

Here, u! is the displacement vector inside the inclusion, " is the displacement vector in the matrix, A is the
Laplace operator. These equations differ from the equations of the classical problem of diffraction of a
plane monochromatic wave on a spherical inclusion for their right-hand sides are not equal to zero. The
latter is the consequence of the fact that the wave number f3,. of the effective (local external) field in the
one particle problem of the EFM does not coincide with the wave number of the matrix f.

The solution of Egs. (4.4) and (4.5) may be found by the same method as the solution of the classical
diffraction problem (see Eringen and Suhubi, 1975). Seeking this solution in the form of the following series

00 2 2
W= (GLl, M, N, ) + e explif), ¢ =1 ﬁ% ﬁz : (4.6)
n=1 — P«



3982 S.K. Kanaun, V.M. Levin | International Journal of Solids and Structures 42 (2005) 3971-3997

o0

_ AR N I
- Z |:C eln +d Moln + e”Neln + m Moln - ﬁ* Neln (47)

we satisfy the differential equations and the conditions at infinity for the scattered field. Here

L = ’i[hn(ocor)]P,ll(COSG)cosqo—i-[ , (4.8)

P! P!
e o dP! (cos 0) N 1 (cos 0) sin (p} ha(o0r)
r

do ? sin 0
M, and Neln are obtained from M!, and N!, in Egs. (4.2) and (4.3) by replacmg functions j,(f.r) by

hy(Bor), hu(z) is the spherical Hankel functlon of the first kind. Functions Lel”7 ! and Nel are defined
by the same equations as functions L Oln and N , but arguments of Bessel functions should be changed
for ar and fr,

eln?

2 2
2 w p 2 _ WP
= = — 41.9
= p . (4.9)
Arbitrary constants ¢,,d,.e, and ¢, d!, ¢, in Egs. (4.6) and (4.7) have to be found from the conditions on
the boundary of the inclusion and the matrix (r = a).
u'(a) =u"(a), mn-6'(a)=n-6"(a). (4.10)

These conditions give a system of linear algebraic equations for the arbitrary constants in Egs. (4.6) and
(4.7). In detalls this system is presented in Appendix A.

Tensors A 4 and A i 10 Eqs. (3.37)~(3.42) are expressed via integrals from the solution of the one particle
problem. Let us begln with Eq. (3.39) for /1

1
Ayily, = . / ul(x) exp(—if,n - x) dx, (4.11)

Here, u!(x) is given by Eq. (4.6) where vector e! has to be replaced by mU". After integration in Eq. (4.11)
we obtain

doity = hir’(x) or Ly = hoy, (4.12)
=g Dot 0@ B i 5.5

+ [PPORED 1 (5 0y, 5.5} + ¢ @13
8B B = (B (B, (Bo) — Bt (B ) (@14

(Ba)’ — (B.a)

From definition (3.37) of tensor ZZ.H follows the equation

— 1 . _
Ayt (x) = " / 0u;(x) exp(—if,m - x) dx, (4.15)

where u}(x) has form in Eq. (4.6) if vector e! is replaced with mU®.
After calculating the integrals in this equation we obtain

¢

Zi}klé/i/(x) = Hé(x) or Z;;'kl = Hljju, (4.16)

where Ijjx = 0490y is @ unit four rank tensor,
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3 = An+1 / % / *
H=——— —i)""n(n+1)(c,Hey +id,Hy +€,H.,) + 4.17
2a(p.a) ;( )" n(n+ 1)( d ) (4.17)

H,, =21} (0a)f} (B.a) + £ (xa) 2 (B.a)] + (B.a)’f} (aa) ) (B.a)
Hay = ~a(B.a) j,(Ba) f} (B.a) + (B.a) g, (B, B.)],

Ho, = 2[f1 (Ba)f] (B.a) + £ (Ba)fi (B.)] + (B.a)’ [, (Ba)fi (B.a) + (B.a) e, (B.B.)].
The coefficients in Eq. (3.57) take the forms

T=-pp.r?H, t=1+p2 26", (4.18)
Ho Po

m=1+p8pty, =228, (4.19)
Ko B. Po

where G®, I'* and P? are the integrals given by formulas (A.1.7)—~(A.1.13) in Appendix A.
The obtained equations define all the coefficient in the dispersion equations (3.60)—(3.62), and we can go
now to the construction of its solution.

5. Solution of the dispersion equation in the long-wave region

In this section we study the solution of dispersion equation in the long-wave (low-frequency) region
where the wave numbers o, i and f. are small (aoa, foa, f.a < 1). In this case only main terms in the real
and imaginary parts of the coefficients ¢/, d, e, and functions 4 and H in Eqgs. (4.13) and (4.18) should be

taken into account. As a result we obtain the coefficients # and H in the forms

1 3 P1 %o

h g et 260) = L iha)’ g ), mo = (5.1)
H o — o (b + 36)5) = H, — i(Bya) Ho, (52)
156,
P [ TR IR S L (5.3)
N 15#0 0 ) [0} 45 0 'uo s . .

Let us consider the coefficients T, ¢, IT and = in Egs. (4.18) and (4.19) in the long-wave limit. With the
accuracy (foa)® we obtain

T=n=0, (5.4)
and the asymptotics of integrals G¥, P? in Eqs. (A.1.7)~(A.1.9) and coefficients IT and ¢ take the forms
1 1 o0 o]
G? ~ 3 2+n3)J° + 1’% Q+m), J'= / &(r)rdr, J= / o(r)rdr, (5.5)
0 0
2 5
P~ — (P, +ifJP,), P, = 28+ 2m) - p 23+ 2m) (5.6)

15 15 ’
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U . .
II~1 _p’u_l ((P? + lﬁSJP(/J)HS - 1('[)]0a)3PSHw)’ My = 1= Hos (57)
0
~1+ipLl 2+ ) —p— 58
L= +4p3p (24n)Bys  p1=p — Py (5.8)
0

The effective shear modulus p. and effective density p. in dispersion equation (3.60) in the long-wave
region take the forms

= iy — iBopuf iy, P = py +1BiPUS P (5.9)

4 4
U:§Ha3, fZI_Tan’ (5.10)

where p; is the static effective shear modulus of the composite (fy — 0), and p, is a “‘static” density.

wH, 1 2(3+2n3) !

Wy =Ho+pHp, Mp=7—"—F5=|—+—-p s Py = Pot PP 5.11
‘ ¥ : 1 _p/vtlePs My ( ) 15:“0 0 : ( )
The factors u,, and p,, in the imaginary parts of u, and p. in Eq. (5.9) take the following forms
34213 2+
22 2o 22 My (5.12)

.uw = :uR 307'5/10 9 p(u = :Dl 127Tp0 .

The dispersion equation (3.60) in the long-wave is presented in the form

2

p=F {1 +ifipuf (’; + Zﬂ L B== (5.13)

Thus, effective wave number S, is

B. = B, + 1y, (5.14)

where the attenuation factor y takes the form
f(ﬁoa)4 BN\ 2 1 5 P 3
p="—r——=) |- —(B3+2 —(2 . 5.15
Y 184 By 5.“0/15( + '70)+p0ps( + 1) ( )

Eqgs. (5.9)—(5.15) for the effective parameters of the composite coincide with the results of Willis (1980)
obtained by the solution of the problem of wave propagation in particulate composites in the long-wave
region.

In Figs. 1 and 2, approximation (5.11) for the effective shear modulus p; of the composites is compared
with the numerical computation of these moduli presented in Segurado and Llorca (2002). Solid line in Fig.
1 is the dependence of 1, on volume concentration of inclusions p that corresponds to Eq. (5.11) in the case
of absolutely rigid inclusions, the dashed line presents the numerical results of Segurado and Llorca (2002).
The same dependencies for the material with spherical pores are presented in Fig. 2. The numerical results
of Segurado and Llorca (2002) were obtained by finite element technique applied to the solution of the elas-
ticity problem for the characteristic volume of the composite material. The number of inclusion inside the
characteristic volume and the sizes of finite elements used by the calculations in this work allow us to con-
sider the obtained result as an exact solution of the homogenization problem or being very close to such a
solution. Thus, the graphs in Figs. 1 and 2 may be interpreted as a comparison of the predictions of the
EFM and the exact values of the elastic shear moduli of the composites with spherical inclusions.

Attenuation factor y of the mean wave field in the long-wave region is proportional to factor (fea)*
(Rayleigh scattering) and to structural factor f



S.K. Kanaun, V.M. Levin | International Journal of Solids and Structures 42 (2005) 3971-3997 3985

Ml ]

25}

15}

1 1 1 1 1
0 0.1 0.2 0.3 0.4 P

Fig. 1. The dependence of the effective shear modulus of the composite with rigid inclusions on the volume concentration of the latter.
Solid line is the prediction of the EFM, line with dots is the results of numerical calculations of Segurado and Llorca (2002).
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Fig. 2. The dependence of the effective shear modulus of the medium with spherical pores on the volume concentration of the latter.
Solid line is the prediction of the EFM, line with dots is the results of numerical calculations of Segurado and Llorca (2002).

M [ e _r
e L S (5.16)

Factor f as well as function @(r) depends only on geometrical properties of the random field of inclu-
sions. It is shown in Appendix B that factor fis non-negative (f = 0) for any realizable correlation function
of a spatially homogeneous random set of inclusions.

Further we use Percus—Yevick correlation function y(r), (r = |x|) for the construction of function &(r)
and structural factor f. The value of y/(r) is the probability density to find a center of an inclusion at point
x if the center of other inclusion is situated in the origin (x = 0). An explicit equation for the Percus—Yevick
correlation function y(r) is presented in Wertheim (1963). The behavior of this functions for p = 0.1,0.3,0.5
is shown in Fig. 3. Function &(r) is connected with function y(r) by the equation



3986 S.K. Kanaun, V.M. Levin | International Journal of Solids and Structures 42 (2005) 3971-3997

5"
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Fig. 3. The graphs of Percus—Yevick correlation function y/({) for various volume concentrations of inclusions.

o) =1- [wlds [ 9l =shutr -2 7=k (517)

Here, vg(x) is the characteristic function of a spherical region of a unit radius centered at point x = 0. The
double integral over 3D-space in this formula may be reduced to a single (one-dimensional) integral (see
Kanaun and Jeulin, 1997). The graphs of function &(r) for various values of p(p = 0.1,0.3,0.5) are pre-
sented in Fig. 4.

After substituting @(r) from Eq. (5.17) into Eq. (5.16) for the factor f we obtain the following equation
o0 r
f=1—p[8+3/ (1—w(C))C2dC}, (= (5.18)
2

For Percus—Yevick correlation function y(r) structural factor ftakes the form (see Twersky, 1975; Willis,
1980)

4 rla

-0.2

Fig. 4. The graphs of specific correlation function @({) corresponding to the Percus—Yevick correlation function .
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Fig. 5. The dependence of attenuation factor y in the long-wave region on the volume concentrations of inclusions p. Solid line
corresponds to the medium with rigid inclusions, dashed line corresponds to the medium with spherical pores.

1— )
p==n (5.19)
(1+2p)
The dependences of the attenuation factor ya/(foa)* calculated from Eq. (5.15) on the volume concen-
tration of inclusions p are presented in Fig. 5. Solid line in this figure corresponds to rigid inclusions,
the dashed line is the case of the porous medium.

6. Solution of the dispersion equation in the short-wave limit

Let us consider the solution of the dispersion equation of the EFM in the short-wave limit. In this case
, 0, fo — oo and as it follows from Eqs. (4.13) and (4.17) h,H — 0. It is known that in the short-wave limit
the effective wave number of the mean wave field has the form (Waterman and Truel, 1961; Bussemer et al.,
1991; Kanaun, 2000)

B. =Rep, +1y, (6.1)

where 7 does not depend on f, and Re 8, = O(f,). It is possible to show that integrals G*, I'* and P? in Eq.
(A.1.7)~(A.1.9) in the short-wave limit take the forms

: @ T 1.
lim G (8.) = B [ M in(B)00)dr = Sifal ), (62)
lim PH(B) = lim Bor®(5.) =i} [ (8.r)00) dr = Sifhal o), (63)
) = [ o, (=" (6.4)

Here, the limit form of p. (6.1) together with asymptotic formulas j,(fyr) ~ sin(B.r)/p.r,
Ji1(B.r) ~ —cos(p,r)/B.r for large f. were used. Taking into account these relations we obtain from Egs.
(3.61) and (3.62)
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R b
1 P Hy

A=1+=ippyl(y)A, A=<—h——H . 6.6
Sl () byt (6.6)

Note that A/A — 0 when o — co.
It follows from Egs. (3.60), (6.5) and (6.6) that in the short-wave limit the equation for the effective wave
number f§, may be written as

2
2 _ Po® 4 4
= 1 — = 1 — . 6.7

Let us consider the short-wave limit of function A in Eq. (6.6). It follows from Egs. (4.13) and (4.17) that
for large values of w (or f§y) the equation for oA takes the form

(P -t pr_ ) o By — B
ﬁOA_ﬁ()(PohO #0H0>+ﬁ0<00 ﬂo)#ﬁz—ﬁf' (6:8)

Here, hy and H, are the same as in Eq. (A1.18) (see Appendix A). As it follows from Eq. (A1.19) the limit
value of the first term in the right-hand side of Eq. (6.8) when w — oo is equal to 3i/2a, and the limit of the
last term in this equation is —2iy. As a result, we obtain the short-wave limits of functions 54 and A in Eq.
(6.7) in the form

5
nmmAzlG—m> hmAzume—myma (6.9)

W—00 a W—00

Thus, in the short-wave limit Eq. (6.7) takes the form

i(3—va)
p.a=pPoa+p 4 . (6.10)
T = pG—a)i(ya)
It follows from this equation that the phase velocity of the mean wave field coincides with the velocity of
shear waves in the matrix material

miﬁ%ﬁi%:% (6.11)

and from Egs. (6.1) and (6.10) we obtain that the short-wave limit 7 of the attenuation factor 7 is

ja=tm(pa) =p(5 - 70) |1 p( - 70 ) 1600 (6.12)

(6.12) is in fact the equation for the short-wave limit 7 of the attenuation factor. For small volume con-
centrations of inclusions (p < 1) the value of 7 is

Ta—é
) —4P'

The graph of the function ya for the Percus—Yevick correlation function is presented in Fig. 6.

Thus, the limit value of the attenuation factor depends neither on the frequency of the incident field nor
on the properties of the inclusions and the matrix, and ya is only a function of the inclusion volume con-
centration p and their distribution in space (for large p it depends on the correlation function @(r) via inte-
gral I(ya) in Eq. (6.4)). This result may be interpreted as follows. In the short-wave limit the geometrical
optics interpretation may be used for the description of the mean wave field in the composite. This field
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Fig. 6. The dependence of the short-wave limit 7 of the attenuation factor of the mean wave field on the volume concentration of
inclusions p.

may be considered as a set of independent beams propagating through the medium. Because of existence of
a continuous component (matrix) the phase velocity of the mean field should coincide with the wave veloc-
ity in the matrix. The attenuation factor y in the short-wave limit does not depend on the frequency and
properties of inclusions and is only a function of a number of scatterers on a unit length (for electromag-
netic waves see similar results in Bussemer et al. (1991) and Kanaun (2000)). The latter is the consequence
of the extinction paradox for the value of the total scattering cross section of the inclusion in the short-wave
limit (see Appendix A).

7. Numerical solution of the dispersion equation

Numerical analysis of dispersion equation (3.60) discovered several branches of its solutions. Three dis-
persion curves (different branches of the solution of the dispersion equation in the region 0 < fi.a, foa < 3)
for the medium with hard and heavy inclusions (p/po = 10, E/Eq = 50,v = 0.3,vo = 0.4,p = 0.3) are pre-
sented in Fig. 7. The dependencies of the real parts of the effective wave number on the wave number of
the matrix (Ref.(fy)) are in the left figure, and the dependences of the imaginary parts Imp.(f) are in
the right figure. In the long- and short-wave regions, the behavior of branch 1 coincides with the asymptotic
solutions obtained in the previous sections. This branch may be called the acoustical (quasiacoustical)
branch. The second branch (2) is lower than the acoustical branch and starts with a finite values of fre-
quency (foa =~ 0.7); this branch may be called the optical (quasioptical) branch. The third branch (3) is
higher than the acoustical branch and starts with the point that correspond to the root of Eq. (3.60) for
o = 0. The existence of such non-trivial roots of the dispersion equations is typical for a medium with
microstructure (see Kunin, 1980, pp. 51-58; 1983, pp. 33-37). For the quasi-continuum models presented
in Kunin (1980, 1983) these roots are imaginary numbers. The non-trivial root of Eq. (3.60) for o =0
turned to be a complex number with a non-zero real part. The attenuation factors ya of the waves that
correspond to branches 2 and 3 are several orders of magnitude more than the attenuation factors of
the acoustic waves and are about 2 along these branches. Thus, these waves are practically attenuate on
the length of the diameter of inclusions, and it is difficult to observe these waves in experiments. Note
that the quasi-optical branches were found out in some suspensions of elastic particles (see Sheng et al.,
1994).
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Fig. 7. The dependence of real Re(k,a) and imaginary Im(k,a) parts of the wave number of the mean wave field on the wave number in
the matrix material f§; for the medium with hard and heavy inclusions. 1 is the quasi-acoustical branch of the solution of the dispersion
equation (3.60), 2 is quasi-optical branch, and 3 is the branch typical for a non-local medium.

The following iterative procedure was used for the numerical solution of dispersion equation (3.60)

Here, index n corresponds to the number of the iteration, parameter ¢ (J¢| < 1) is to be chosen for conver-
gence of the iterative process. Functions p.(f.) and u.(f.) are defined in Eq. (3.61), (3.62). As a “zero” iter-
ation a simple additive law of the dependence of the effective parameters of the composite on the
microstructure was assumed. Such an iterative procedure was used for the construction of the acoustical
branch of dispersion equation (3.60). The solutions corresponded to the second and third branches were
found by seeking direct minima of the function

(7.2)

in the complex plane (Ref., Imf.). Note that in the region of middle wave lengths and for high volume con-
centrations of inclusions, the effective wave numbers of these three branches turn to be close, and the iter-
ative procedure (7.1) may converge to a solution corresponded to branch 2 or 3. In this region these three
branches should be carefully separated.

The results of calculation of the phase velocities and attenuation factors of shear waves that correspond
to the acoustical branch of the solutions of the dispersion equation are presented in Figs. 8 and 9. The cases
of composites with hard and heavy inclusions (p/po = 10, E/Eq = 50, v=0.3, vy = 0.4, and E,v and Ej,v,
are Young moduli and Poisson ratios of the inclusions and the matrix) and volume concentrations of inclu-
sions p = 0.1 and p = 0.3 are in Fig. 8. The considered region of wave number f3, covers the long-, middle-
and short-regions (0 < foa < 100, logarithmic scale is used in Fig. 8). More detailed behavior of these
dependences in the region (0 < fpa < 3) is shown in Fig. 9, where non-logarithmic scale is used. The dashed
horizontal lines in these figures are the short-wave asymptotics of the velocities and attenuation factors of
waves obtained in Section 6 (Egs. (6.11) and (6.12)).
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Fig. 8. The dependences of relative velocity v,/vq (vg is the velocity of shear waves in the matrix) and attenuation factor y of the mean
wave field on the frequency of the incident field (wave number of the matrix material f,) for the medium with heavy and hard
inclusions (p/po = 10, E/Ey = 50,v = 0.3,vo = 0.4).
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Fig. 9. The same dependences as in Fig. § in the non-logarithmic scale.

The results of calculation of the phase velocities and attenuation factors of shear waves for the composite
with soft and light inclusions (p/po = 0.1, E/Ey = 0.02,v = 0.3, vy = 0.4) are presented in Fig. 10. The graphs
in this figure are constructed with the step 0.25 in the logarithmic scale and don’t reflect small-scale oscil-
lations that are essential in this case. Detailed dependences of the velocities and attenuation factors on the
mean wave field on frequency (fya) in the region 0 < fioa <4 are presented in Fig. 11. Note that in some
region of middle wave lengths (0.6 < foa < 1.8 for p = 0.3) the imaginary part of the solutions of dispersion
equation (3.60) (attenuation factor) turns to be negative (the dashed part of the curve in the right-hand side
of Fig. 10 corresponds to negative values of the attenuation factors). In this region the method overestimate
interactions between inclusions, and its predictions for the attenuation factors become physically not cor-
rect. For small volume concentrations of inclusions (p <0.1) the attenuation factor is positive. For hard
and heavy inclusions the method predicts positive values of the attenuation factors for all frequencies of
the incident field and volume concentrations of inclusions.
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Fig. 10. The dependences of relative velocity v,/vy and attenuation factor y of the mean wave field on the wave number of the matrix
material 3, for the medium with light and soft inclusions (p/po = 0.1, E/Ey = 0.02,v = 0.3,vy = 0.4).
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Fig. 11. The same dependences as in Fig. 10 in the non-logarithmic scale.

8. Conclusion

The version of the EFM developed in this work allows us to obtain the dispersion equation for the wave
numbers of the mean elastic shear wave fields in two phase particulate composites. This dispersion equation
serves for all frequencies of the incident field, arbitrary properties of the phases and their volume
concentrations.

In the long-wave region, the method gives physically correct values of the velocities and attenuation fac-
tors of the mean wave field in the composites. Its predictions of the effective shear moduli of particulate
composites correspond to the numerical calculations of the latter in Segurado and Llorca (2002) and to
experimental data (see Kanaun and Levin, 1994). The error of the EFM in this region is essential if the
inclusions are much harder than the matrix, and its volume concentration is more than 0.3 (see Fig. 1).

In the middle wave region, the method gives physically reasonable values of the phase velocities of the
mean wave fields but it predicts negative values of attenuation factors for the composites with high volume
concentrations of the inclusions that are much softer and lighter than the matrix. Apparently, the picture of
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the detailed wave field in the middle wave region is very complex and cannot be described by relatively sim-
ple hypotheses of the EFM.

In the short-wave region the method gives physically correct results for all types of inclusions.

In the framework of the method, it is possible to change its main hypotheses for more appropriate ones.
In particular, the effective field that acts on every inclusion in the composite may be taken more complex
than a plane wave as it was assumed in hypothesis H1. Hypothesis H3 of quasi-crystalline approximation
(see Egs. (3.24) and (3.25)) may be also changed for the following

<Alf/'k/8/tl(x) ‘x7xla x//> = </1,:,-k18;:/(x) |x’xl>7 (81)

(Aarty (x) |x, %', X"y = (At () |x, x7). (8.2)

This hypothesis closes the chain of equations for the many point conditional means of the local external
field on the second step (see details in Kanaun, 2003).

Comparison of the EFM with other self-consistent methods (various versions of the effective medium
method (EMM)) shows that these methods give close results in the long-wave region and for small volume
concentrations of inclusions, but in the middle and short-wave regions the predictions of the EFM and
EMM may deviate essentially. These predictions are also different for the composites with high volume con-
centrations of contrast inclusions (see the comparison of the EFM and EMM predictions in the case of
shear wave propagation in fiber composites in Kanaun and Levin (2003), the analysis of various versions
of the EMM is presented in Kanaun et al. (2004)). The main advantage of the EFM in comparison with
various versions of the EMM is the possibility to take into account the influence of peculiarities in spatial
distributions of inclusions on the mean wave field in composites. For electromagnetic waves, such influence
was studied in Kanaun and Jeulin (1999) and Kanaun (2000). It was shown in the last work that the exis-
tence of photonic gaps in the frequency region in composite materials with regular microstructures may be
described by the considered version of the EFM.

Appendix A. One-particle problem of the EFM for shear wave propagation
A.1. Equations for the constants in the solution of the one particle problem

The constants in the solution (4.6) and (4.7) of the one particle problem are to be found from the bound-
ary conditions (4.10). These conditions give the following system of linear algebraic equation for the
constants

Cn N 24101 A fiB.a)
Ln(€n>_Ln<e;)_l n(n+l)E(1_C)<ﬁ(ﬁ*a)> (A.1.1)

) _Hap () = 2t ] i(l_ﬂ*> 13 (B.a) N
M”<en> u*M"(e;> Loamr 1) B MOC <f81(/i*a) ’ (A.1.2)

where the matrices L, and M,, are
L (ke fra) (k) fxa)
C\fka) fika) ) "\ fFka) f(ka) )

L', and M, in Egs. (A.1.1) and (A.1.2) have forms (A.1.3) if radial function f2(xya), />(B,a) are replaced
with f1(xa), f}(Ba). The system for the constants d, and d/, has the form

(A.1.3)
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h(Ba)d, =, (Ba)d, = (1= £ (B, (A14)

. 2n+1

15 (Boa)d, — Mﬂofé (Ba)d, = —i PEESY <1 - /%C*)fg (B.a). (A.1.5)

The radial functions f} (¢r), (m=1,2,...,9, i=1,2) in (A.1.1)~(A.1.5) have forms
filor) = ny,(ar) — ary), (o), f3(Br) = n(n+ 1)y, (Br),
filor) =y, (o), fi(Br) = (n+ 1)y, (Br) — Bry, . (Br),

filr) = ( - )y@(w) + 2017, (o),

_ _ _ (A.1.6)
Ss(Br) = n(n+1)[(n — DY, (Br) = Bry,,, (Br)],

Sfr(or) = (n = 1)y (or) — ary,, (ar),

Aitpr) = ( 1 @)y@(ﬁr) + v (B)

In these equations wave numbers o and f§ are without indices for the fields inside the inclusion, they have
index “0” for the fields in the matrix and “*” for the medium with the effective properties. If i = 1 functions
y!(z) are spherical Bessel functions j,(z), for i = 2 these functions are Hankel functions £,(z).

A.2. Integrals in Egs. (4.18) and (4.19)

The integrals in Eqs. (4.18) and (4.19) depend on the specific correlation function @(r) and have forms

¢ = [ [ + :01 2L o(rrar (A17)
o _ * Al r _4j2(/3*r) i (B r , 2j5(B.r) Adr
r =~ [{e0 i -0 1 600+ 60 2 a0 ar (A18)
o _ > i (Br _9j1(ﬁ*’”) 32j,(B.r) (s r _jl(ﬁ*’”)
P" = /0 {G2( ) [Jo(B.r) B.r + (ﬂ*r)z + Gs( ){]o(ﬁ* ) Br }
4Gy(r ABr) 4j2([3*1’)] }QD' rydr — B.I'*. A.1.9
HG() [0 =S 0 — (A.19)
Here, the functions G(r) are
Gi(r) = (ﬂl—r)z { [iﬁor 1+ (ﬁorﬂ e — (oo — 1)eiw}, (A.1.10)
Ga(r) = (ﬁlr)z { [3(ioc0r )+ (ocor)z] eitr _ [3(iﬁ0r 1)+ (ﬁorﬂ eiﬁo"}, (A.L11)
Gs(r) = ﬁ { [3(1 —iBor) — 2(iByr) + i(ﬁorﬂ elhr [3(1 — iogr) — (Wﬂ eiw}, (A.1.12)
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Ga(r) = (ﬁlr)z {[001 = isor) = 4(ar)? + i)’ | e = 901 = iByr) — 4(Byr)” +i(Bor)’ [}

(A1.13)

A.3. The total scattering cross-section

The wave field outside an isolated inclusion consists of two parts: the incident field and the field scattered
on the inclusion. Let us consider the diffraction of the plane shear wave propagating in the original matrix
(s = Po) on an isolated spherical inclusion. The field u}(x) scattered on the inclusion is the integral term in
Eq. (3.1), and thus u}(x) has the form

w(x) = / [0,Gia(or = ) Clypytn () + 107 Gis o — e ()| e (A.1.14)

Because integration here spreads over the region v occupied by the inclusion only, Eq. (A.1.14) defines
the scattered field via the fields u; and ¢; inside the inclusion.

Let us consider the long-distant asymptotic of the scattered field. Using a standard technique of evalu-
ation of the integral in Eq. (A.1.14) (Bohren and Huffman, 1983) we obtain that for large |x| the following
equation holds

eiocor R eiﬁor R X
B;(n) , n=—, r=[x|. (A.1.15)

)
r r |x|

Here, A;(n) and B;(n) are the vector amplitudes of the longitudinal and shear waves, scattered in the direc-
tion n. These amplitudes are expressed via the displacement and strain fields inside the inclusion by the fol-
lowing equations

A;(R) = iy fi(oon),  Bi(h) = (0 — i) fi(Poht), (A.1.16)

filah) =7 - {mwz/uk(x/)exp(—iqﬁ-x/)dx/+iqn1C}kmn/Smn(X')eXp(—iqﬁ-X’)dX’ 7
TTPH v v

(g = a0, By)-

The normalized total scattering cross-section Q7{®) of the inclusion of a unit radius in the case of trans-
versal wave propagation is defined by the equation

4
O () :ﬁ—Im[m~B(n)}, (m-n=0). (A.1.17)
0
Here, n is the wave normal, m is the direction of the polarization vector.

Thus, the scattering cross-section is expressed via the forwarded scattering amplitude B(n) (the analogue
of the “optical theorem” in electromagnetics (see Bohren and Huffman, 1983). Egs. (A.1.16) and (A.1.17)
together with Eqgs. (4.12), (4.13) and (4.17) give

4 P1 Jad
0 —ﬁIm(h ——H, |, A.1.18
I VR (A.1.18)
where /g and Hy coincide with 4 and H in Egs. (4.13) and (4.17) when f, = f,.

It is possible to show that the short-wave limit of Q7{w) when v — oo takes the form (paradox of

extinction)
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lim O (w) = 2. (A.1.19)
This limit does not depend neither on the properties of the inclusion nor on the properties of the
matrix.

Appendix B. Structural factor fin Eq. (5.15) for the attenuation in the long-wave region

Consider a spatially homogeneous random set of spherical inclusions of unit radii (¢ = 1) in 3D-space,
and let ¥(x) be the characteristic function of the region occupied by the inclusions. The covariance
Sa(x) = (V(y)V(y + x)) of the random function ¥(x) is connected with the correlation function &(|x|) in
Egs. (3.30) and (3.22) by the relation

3p
$2(x) = 3 -So(lx]) + p*(1 — &(lx])), (B.1)
where So(|x|) is the volume of intersection of two spheres of unit radii if |x| is the distance between its cen-
ters. It is shown in Torquato (1999) that for any realizable random function V(x) the following inequality
holds

/ [S>(x) — p*]dx > 0. (B.2)

After substituting in this equation function S,(x) and taking into account that fS0(|x|)dx =4n/3 we
obtain

4 4 *© 4
[ 520 - la =52 [ @ =Sm(1-3 [T 0P ar) =Smr. (B3)
0
This equation together with Eq. (B.2) show that the structural factor

f=1-3 /0 T eld (B4)

is a non-negative number for any realizable homogenous distribution of inclusions in space.
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