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Abstract

The work is dedicated to the problem of plane monochromatic shear wave propagation through elastic matrix com-
posite materials with a homogeneous random set of spherical inclusions. The effective field method (EFM) and quasi-
crystalline approximation are used for the calculation of phase velocity and attenuation factor of the mean wave field
propagating through the composite. The version of the method developed in the work allows us to obtain the dispersion
equation for the wave vector of the mean wave field that serves for all frequencies of the incident field, properties and
volume concentrations of the inclusions. The long- and short-wave asymptotic solutions of the dispersion equation are
found in closed analytical forms. Numerical solutions of this equation are constructed in a wide region of frequencies
that covers the long-, middle- and short-wave regions of the propagating waves. The phase velocities and attenuation
factors of the mean wave field in the composites are analyzed for various elastic properties, density and volume con-
centrations of the inclusions. Comparisons of the predictions of the method with some numerical computation of
the effective parameters of matrix composites are presented; possible errors in predictions of the velocities and attenu-
ation factors of the mean wave field in the composites are indicated and discussed.
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1. Introduction

The problem of wave propagation through heterogeneous media has a number of important applications
such as non-destructive evaluation of the microstructures of composite materials and prediction of the dy-
namic properties of composites. In this work the problem of monochromatic wave propagation through the
medium with a set of isolated spherical inclusions is considered. If the set of inclusions is random, the exact
solution of this problem cannot be found, and only various approximations are available. A version of the
effective field method (EFM) is developed in this work for the construction of such an approximate solu-
tion. This method has a long history and was successfully used in the nuclear physics, in the theory of phase
transitions for the description of various physical phenomena in the ensembles of interacting particles. An
important area of its application is the problem of wave propagation through the medium with isolated
inclusions (scatterers). The main aim of the theory in this problem is prediction of the phase velocity
and attenuation factor of the mean (coherent) wave field propagating through the inhomogeneous medium.

The EFM is based on some hypotheses about the structure of a local external field that acts on every
particle (inclusion) in the composite medium. As a rule the area of the application of these hypotheses can-
not be strictly indicated, and only comparison with experimental data or numerical solutions allow us to
point out the borders of this area. In order to understand the character of possible errors of the method
it is important to analyze its predictions in a wide region of frequencies of the incident field and for various
elastic properties, densities and volume concentrations of inclusions.

Application of the EFM to the solution of the problem of wave propagation through inhomogeneous
medium starts with the famous work of Rayleigh (1892). The hypotheses of the EFM were formulated
explicitly in the classical works of Foldy (1945), Lax (1951) and Lax (1952), where the method was applied
to the problem of scalar wave propagation through the medium with point scatterers. It was assumed in
these works that the local (effective) field that acts on every scatterer in the medium is a plane wave, and
it is the same for all the scatterers. This wave was supposed to be coincided with mean wave field (Foldy)
or proportional to the mean field (Lax). This hypothesis was called the quasi-crystalline approximation,
and in many works this name is associated with the method itself. This hypothesis reduces the solution
of the many particle problem (interaction between many particles) to a one particle problem (diffraction
of effective external field on one particle). Another version of the EFM for the case of scalar waves was
developed in the works of Waterman and Truel (1961) and Ficioris and Waterman (1964), where the effec-
tive field was assumed to be a combination of the forward and backward plane waves with the wave num-
bers of the background medium (matrix).

Application of the quasi-crystalline approximation to the problem of wave propagation through elastic
media with isolated inclusions encounters two main difficulties. Firstly, the one particle problem in this case
is diffraction of a plane monochromatic wave on an inclusion of finite sizes, and the exact solution of this
problem for an arbitrary frequency of the incident field exists only for a spherical inclusion. In the long-
wave region, where the one particle problem is quasistatic (lengths of the propagating waves are more than
the characteristic size of inclusions), the exact solution may be found for an arbitrary ellipsoidal homoge-
neous inclusion and its limit forms. In the case of inclusions of non-canonical shapes only numerical solu-
tions of the one particle problem are available.

The second difficulty in the application of the method is the procedure of averaging the detailed wave field
in the composite over the ensemble realizations of the random field of inclusions. In a number of works
where the EFM was applied to the problem of elastic wave propagation in particulate composites, the
long-wave region and spherical or cylindrical inclusions were considered (see Bose and Mal, 1973, 1974;
Datta, 1977; Datta et al., 1988, and others). The technique that was used in these works was the expansion
of the fields scattered on inclusions over eigenfunctions of the one particle diffraction problem. In the works
of Varadan et al. (1978) and Varadan and Varadan (1985) this technique was used for the analysis of wave
propagation in the middle wave length region. The main drawback of this technique is the complexity of the
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procedure of ensemble averaging. It was shown in the works of Twersky (1975, 1978) and Willis (1980) that
the technique of integral equations is a more efficient tool for the realization of the averaging procedure.

In this work we consider propagation of monochromatic shear waves in the medium with spherical inclu-
sions and develop the mathematical formalism of the EFM that serves for all frequencies of the incident
field, elastic properties, density and volume concentrations of inhomogeneities. Using this formalism we
obtain the dispersion equation for the wave number of the mean wave field in the composite, and the real
and imaginary parts of this number give us the phase velocity and attenuation factor of the mean wave field.
Explicit asymptotic solutions of the dispersion equation are found in the long- and short-wave regions;
numerical solutions of this equation are constructed in a wide region of frequencies of the incident field
and for various properties and volume concentrations of inclusions. The method is based on the hypotheses
that are close to the Lax version of the EFM. The structure of the paper is as follows.

In Section 2, we consider the integral equations of the problem of monochromatic wave propagation
through matrix composite materials. In Section 3, the main hypotheses of the EFM are formulated, and
the general scheme of the method is developed. The dispersion equation for the wave vector of the mean
wave field in the composite that serves for all frequencies of the incident field, properties and volume con-
centrations of inclusions is obtained in this section. The coefficients in the dispersion equation are expressed
via the solution of the one-particle problem (the problem of diffraction of the effective external field on an
isolated spherical particle). The solution of this problem and the final form of the dispersion equation are
presented in Section 4. In Section 5, we obtain the long-wave asymptotic solution of the dispersion equation
in an explicit analytical form. The comparisons of the predictions of the method with numerical calcula-
tions of the effective elastic constants of the composites are presented in this section. In Section 6, the
short-wave asymptotic of the solution of dispersion equation is obtained and discussed. Section 7 is dedi-
cated to the numerical solution of the dispersion equation in a wide region of frequencies that covers long-,
middle- and short-wave regions. We consider two types of inclusions that are much harder and heavier than
the matrix and much lighter and softer than the matrix. It is shown that the dispersion equation has several
branches of its solutions. The main branch may be interpreted as an acoustic (quasiacoustic) one, and some
other branches (e.g., quasioptical) may be also indicated. In the conclusion (Section 8) the area of the appli-
cation of the method is discussed.
2. Integral equations of the diffraction problem

Let us consider an infinite homogeneous medium (matrix) with elastic moduli C0 and mass density q0
containing a homogeneous random set of inclusions with elastic moduli tensor C and mass density q.
The inclusions occupy region V, and V(x) is the characteristic function of this region (V(x) = 1 if x 2 V

and V(x) = 0 if x 62 V). Here, x(x1,x2,x3) is a point of the medium with Cartesian coordinates x1,x2,x3.
We study a monochromatic elastic wave of frequency x that propagates in such a medium. If the depen-
dence of time t is defined by the factor exp(�ixt), the displacement field ui in the medium has the form
ui(x, t) = ui(x)exp(�ixt), and amplitude ui(x) of this field satisfies the following integral equation (see,
e.g., Willis, 1980)
uiðxÞ ¼ u0i ðxÞ þ
Z

ojGikðx� x0ÞC1
kjmnðx0Þemnðx0Þdx0 þ x2

Z
Gikðx� x0Þq1ðx0Þukðx0Þdx0; oi ¼

o

oxi
;

C1ðxÞ ¼ C1V ðxÞ; C1 ¼ C � C0; q1ðxÞ ¼ q1V ðxÞ; q1 ¼ q� q0:

ð2:1Þ
Here, u0i ðxÞ is an incident field that would have existed in the matrix without inclusions under prescribed
conditions at infinity, eij ¼ oðiujÞ is the strain tensor, and Gik(x) is the Green function of the operator
ojC

0
ijklol þ q0x

2dik. For the isotropic medium with k0, l0 as Lamé parameters, tensor Gik(x) takes the form
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GikðxÞ ¼
1

4pq0x2
dikb

2
0

eib0r

r
� oiok

eia0r

r
� eib0r

r

� �� �
;

a20 ¼
x2q0

k0 þ 2l0

; b2
0 ¼

x2q0

l0

;

ð2:2Þ
where dik is Kroneker�s symbol.
It follows from Eq. (2.1) that the amplitude eij(x) of the strain tensor in the composite medium satisfies

the equation
eijðxÞ ¼ e0ij þ
Z

P ijklðx� x0ÞC1
klmnðx0Þemnðx0Þdx0 þ x2

Z
oðjGiÞkðx� x0Þq1ðx0Þukðx0Þdx0;

P ijklðxÞ ¼
o2Gik

oxjoxl
jðijÞðklÞ: ð2:3Þ
Here, parentheses in indices means symmetrization: T ðijÞ ¼ 1
2
ðT ij þ T jiÞ:

If the incident field is a plane monochromatic wave, displacement vector u0i ðxÞ and strain tensor e0ijðxÞ
take the forms
u0i ðxÞ ¼ U 0
i e

iq0�x; e0ijðxÞ ¼ iq0ðiU 0
jÞe

iq0�x;

q0 ¼ q0n0; q0 � x ¼ q0n
0
i xi;

ð2:4Þ
where q0 is the wave number of the incident wave in the matrix, n0 is the wave normal and U 0
i is the polar-

ization vector (q0 = a0 for longitudinal waves and q0 = b0 for shear waves).
Note that the functions C1(x) and q1(x) in the right-hand side of Eqs. (2.1) and (2.3) cut the functions

ui(x) and eij(x) on the region V occupied by the inclusions. Thus, the main unknowns of the problem are the
values of these fields inside the inclusions. The fields in the matrix may be reconstructed from Eqs. (2.1) and
(2.3) if the fields ui(x), eij(x) inside the inclusions are known.
3. General scheme of the effective field method

Let us consider a typical realization of a homogeneous random set of inclusions in the background med-
ium (matrix). Every inclusion in the composite may be considered as an isolated one in the original matrix
by the action of local external displacement u�i ðxÞ and strain e�ijðxÞ fields. The fields u�i ðxÞ and e�ijðxÞ do not
coincide with the incident fields u0i ðxÞ and e0ijðxÞ applied to the medium; u�i ðxÞ and e�ijðxÞ consist of the inci-
dent fields and the fields scattered on the surrounding inclusions. If an inclusion occupies region v, the fields
inside this inclusion satisfies the integral equations that are similar to Eqs. (2.1) and (2.3) (x 2 v)
uiðxÞ ¼ u�i ðxÞ þ
Z
v
ojGikðx� x0ÞC1

kjmnemnðx0Þdx0 þ q1x
2

Z
v
Gikðx� x0Þukðx0Þdx0; ð3:1Þ

eijðxÞ ¼ e�ijðxÞ þ
Z
v
P ijklðx� x0ÞC1

klmnemnðx0Þdx0 þ q1x
2

Z
v
oðjGiÞkðx� x0Þukðx0Þdx0: ð3:2Þ
3.1. Integral equations for the effective fields

Let Eqs. (3.1) and (3.2) may be solved for arbitrary external fields u�i ðxÞ, e�ijðxÞ; and the fields uðkÞi ðxÞ,
eðkÞij ðxÞ inside the inclusion centered at point xk may be presented in the form
uðkÞi ðxÞ ¼ kðkÞik u
�
kðxÞ; eðkÞij ðxÞ ¼ KðkÞ

ijkle
�
klðxÞ; ð3:3Þ



S.K. Kanaun, V.M. Levin / International Journal of Solids and Structures 42 (2005) 3971–3997 3975
where kðkÞik and KðkÞ
ijkl are some linear operators of the solution of the diffraction problem for one inclusion

(one particle problem). It follows from Eqs. (2.1) and (2.3) that the fields ui(x) and eij(x) in the medium
are expressed via the fields u�i ðxÞ and e�klðxÞ in the form
uiðxÞ ¼ u0i ðxÞ þ
Z

ojGikðx� x0ÞC1
kjmnKmnrse

�
rsðx0Þ þ q1x

2Gikðx� x0Þkklu�l ðx0Þ
h i

V ðx0Þdx0; ð3:4Þ

eijðxÞ ¼ e0ijðxÞ þ
Z h

P ijklðx� x0ÞC1
klmnKmnrse

�
rsðx0Þ þ q1x

2oðiGjÞkðx� x0Þkklu�l ðx0Þ
i
V ðx0Þdx0: ð3:5Þ
Here, functions Kmnrse�rsðxÞ and kklu�l ðxÞ coincide with KðkÞ
mnrse

�
rsðxÞ and kðkÞkl u

�
l ðxÞ inside the k-th inclusion

(k = 1,2,3, . . .). Linear operators KðkÞ
mnrs and kðkÞkl may be presented in the forms of some integral operators
KðkÞ
mnrse

�
rsðxÞ ¼

Z
vk

KðkÞ
mnrsðx; x0Þe�rsðx0Þdx0; ð3:6Þ

kðkÞkl u
�
l ðxÞ ¼

Z
vk

kðkÞkl ðx; x0Þu�l ðx0Þdx0; ð3:7Þ
where KðkÞ
mnrsðx; x0Þ and kðkÞkl ðx; x0Þ are generalized functions known from the solution of the one particle prob-

lem. Points x and x 0 belong to the same domain vk because the fields inside k-th inclusion depend only on
the values of the local external fields in the region vk.

The equations for the local external fields u�i ðxÞ and e�ijðxÞ that act on an arbitrary (k-th) inclusion follow
from their definitions as a sum of the incident fields and the fields scattered on surrounding inclusions and
take the forms
u�i ðxÞ ¼ u0i ðxÞ þ
Z

ojGikðx� x0ÞC1
kjmnKmnrse

�
rsðx0Þ þ q1x

2Gikðx� x0Þkklu�l ðx0Þ
h i

V ðx; x0Þdx0; ð3:8Þ

e�ijðxÞ ¼ e0ijðxÞ þ
Z h

P ijklðx� x0ÞC1
klmnKmnrse

�
rsðx0Þ þ q1x

2oðjGiÞkðx� x0Þkklu�l ðx0Þ
i
V ðx; x0Þdx0: ð3:9Þ
Here, V(x;x 0) is the characteristic function (with argument x 0) of region Vx defined by the equation
V x ¼
[
i6¼j

vi if x 2 vj: ð3:10Þ
As it follows from Eq. (3.10) function V(x;x 0) is equal to zero if points x and x 0 are inside the same inclu-
sion. Thus, the integral terms in Eqs. (3.8) and (3.9) are the sums of the fields scattered on all the inclusions
except the one that occupies region vj if x 2 vj.

3.2. The main hypotheses of the EFM and average procedure

It is seen from Eqs. (3.4), (3.5), (3.8) and (3.9) that the local external fields u�l ðxÞ and e�rsðxÞ may be con-
sidered as the main unknowns of the problem. For random sets of inhomogeneities u�l ðxÞ and e�rsðxÞ are ran-
dom functions. The main hypotheses of the EFM concern the structure of the fields u�l ðxÞ and e�rsðxÞ: Let us
introduce the first of hypothesis H1.

H1. The fields u�l ðxÞ and e�rsðxÞ are plane waves in the vicinity of every inclusion.

This hypothesis allows us to construct operators K and k in Eqs. (3.6) and (3.7) from the solution of the
problem of diffraction of a plane monochromatic wave on an isolated inclusion (see Section 4).

Let us find the mean wave field hui(x)i in the composite medium. After averaging Eq. (3.4) over the
ensemble realizations of the random sets of inclusions, we obtain
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uiðxÞh i ¼ u0i ðxÞ þ
Z

ojGikðx� x0ÞC1
kjmn Kmnrse

�
rsðx0ÞV ðx0Þ

� �
þ q1x

2Gikðx� x0Þ kklu�l ðx0ÞV ðx0Þ
� �h i

dx0:

ð3:11Þ

A similar equation may be written for the mean value of the strain field heij(x)i after averaging of Eq.

(3.5).
For the next step we have to introduce the second hypothesis of the EFM.

H2. Random local external fields u�i ðxÞ and e�ijðxÞ acting on an inclusion v are statistically independent on
the elastic properties, density and radius of this inclusion.

Thus, it is assume in this hypothesis that the local external field acting on an arbitrary inclusion in the
composite depends mainly on global statistical characteristics of the random set of inhomogeneities, and it
is not sensitive to the properties of individual inclusions.

Hypothesis H2 allows us to write the mean values of the functions Kijkle�klðxÞV ðxÞ and kiku�kðxÞV ðxÞ in the
right-hand side of Eq. (3.11) in the forms
Kijkle
�
klðxÞV ðxÞ

� �
¼ V ðxÞKijkl

� �
e�klðxÞjx
� �

; ð3:12Þ

kiku�kðxÞV ðxÞ
� �

¼ V ðxÞkikh i u�kðxÞjx
� �

: ð3:13Þ
Here, h Æ jxi is averaging under the condition that point x belongs to the region V occupied by the inclu-
sions. It follows from Eqs. (3.11)–(3.13) that the mean wave fields hui(x)i takes the form
uiðxÞh i ¼ u0i ðxÞ þ p
Z h

ojGikðx� x0ÞCkjmnK
0
mnrsê

�
rsðx0Þ þ q1x

2Gikðx� x0Þk0klû
�
l ðx0Þ

i
dx0; ð3:14Þ

ê�rsðxÞ ¼ e�klðxÞjx
� �

; û�l ðxÞ ¼ u�kðxÞx
� �

: ð3:15Þ
where p is the volume concentration of inclusions. The fields û�l ðxÞ and ê�rsðxÞ are the mean external fields
that acts on inclusions in the composite medium. Farther, they will be called effective external fields. Oper-
ators K0

ijkl and k0ij in Eq. (3.14) are defined by the equations
Kijkle
�
klðxÞV ðxÞ

� �
¼
Z

V ðx0ÞKijklðx; x0Þ
� �

ê�klðx0Þdx0 ¼ p
Z

K0
ijklðx� x0Þê�klðx0Þdx0 ¼ pK0

ijklê
�
klðxÞ; ð3:16Þ

kiku�kðxÞV ðxÞ
� �

¼
Z

V ðx0Þkikðx; x0Þh iû�kðx0Þdx0 ¼ p
Z

k0ikðx� x0Þû�kðx0Þdx0 ¼ pk0ik û
�
kðxÞ: ð3:17Þ
The kernels K0
ijklðx� x0Þ ¼ hKijklðx; x0Þjxi and k0ijðx� x0Þ ¼ hkijðx; x0Þjxi of the operators K0 and k0 depend

on the difference x � x 0 for a homogeneous random set of inclusions.
In order to find the means û�i ðxÞ and ê�ijðxÞ in Eqs. (3.14)–(3.17) let us average Eqs. (3.8) and (3.9) over

ensemble realizations of the random field of inclusions by the condition that x 2 V
û�i ðxÞ ¼ u0i ðxÞ þ
Z

ojoðjGiÞkðx� x0ÞC1
kjmnhKmnrse

�
rsðx0ÞV ðx; x0Þjxi þ q1x

2Gikhkklu�l ðx0ÞV ðx; x0Þjxi
h i

dx;

ð3:18Þ

ê�ijðxÞ ¼ e0ijðxÞ þ
Z h

P ijklðx� x0ÞC1
klmnhKmnrse

�
rsðx0ÞV ðx; x0Þjxi þ q1x

2oðjGiÞkhkklu�l ðx0ÞV ðx; x0Þjxi
i
dx0:

ð3:19Þ
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Using hypothesis H2 the means in the right-hand sides of these equations may be presented in the forms
hKmnrse
�
rsðx0ÞV ðx; x0Þjxi ¼ phKmnrse

�
rsðx0Þjx0; xiWðx; x0Þ; ð3:20Þ

hkklu�l ðx0ÞV ðx; x0Þjxi ¼ phkklu�l ðx0Þjx0; xiWðx; x0Þ; ð3:21Þ

Wðx; x0Þ ¼ 1

p
hV ðx; x0Þjxi: ð3:22Þ
Here, function W(x,x 0) depends only on geometrical properties of the random set of inclusions. If this set is
homogeneous and isotropic, W(x,x 0) is a function of only jx � x 0j: W(x,x 0) = W(jx � x 0j). The properties of
this function follows from Eqs. (3.10) and (3.22): W(x) is a continuous function and
Wð0Þ ¼ 0; Wð1Þ ¼ 1: ð3:23Þ

As it is seen from Eqs. (3.18)–(3.21) the conditional means û�i ðxÞ ¼ hu�i ðxÞjxi and ê�ijðxÞ ¼ he�ijðxÞjxi are ex-

pressed via more complex conditional means hkiku�kðx0Þjx0; xi and hKijkle�klðx0Þjx0; xi (the averaging under the
condition that points x and x 0 belong to V). These two-points conditional means can be expressed via three-
point similar means using the same Eqs. (3.8) and (3.9), etc. (If we average Eqs. (3.8) and (3.9) by the con-
ditions x,x 0 2 V, in the right-hand sides of these equations appear the means of the functions u�i ðx00Þ and
e�ijðx00Þ under the condition that x00,x 0,x 2 V). As a result we go to an infinite chain of equations that con-
nects all the multipoint conditional means of the effective fields u�i ðxÞ and e�ijðxÞ. In order to obtain a closed
system of equations for the means hu�i ðxÞjxi and he�ijðxÞjxi one has to accept an additional hypothesis H3
concerned the properties of the conditional means. The simplest one is called the quasi-crystalline approx-
imation, and according to this hypothesis we accept
hKijkle
�
klðx0Þjx0; xi ¼ hKijkle

�
klðx0Þjx0i ¼ K0

ijklê
�
klðx0Þ; ð3:24Þ

hkiku�kðx0Þjx0; xi ¼ hkiku�klðx0Þjx0i ¼ k0ik û
�
kðx0Þ: ð3:25Þ
Here, K0
ijkl and k0ik are some non-random operators that will be constructed below from the solution of the

one particle problem. For the solution of the problem of scalar wave propagation through the medium with
point scatterers a similar hypothesis was formulated by Lax (1951, 1952).

Thus, hypothesis H3 may be formulated as follows.

H3. The means of the wave fields uiðx0Þ ¼ kiku�kðx0Þ and eijðx0Þ ¼ Kijkle�klðx0Þ under the condition that points
x 0 and x are inside different inclusions coincide with the same means by the condition that only point x 0 is
inside of an inclusion (x0 2 V).

This assumption closes the chain of the equations for many-point conditional means of the effective
fields at the first step. Eqs. (3.18) and (3.19) together with Eqs. (3.20)–(3.22), (3.24) and (3.25) give us
the following system of integral equations for the fields ê�klðxÞ and û�kðxÞ
û�i ðxÞ ¼ u0i ðxÞ þ p
Z

ojGikðx� x0ÞC1
kjmnK

0
mnrsê

�
rsðx0Þ þ q1x

2Gikðx� x0Þk0klû
�
l ðx0Þ

h i
Wðx� x0Þdx0; ð3:26Þ

ê�ijðxÞ ¼ e0ijðxÞ þ p
Z

P ijklðx� x0ÞC1
klmnK

0
mnrsê

�
rsðx0Þ þ q1x

2oðjGiÞkðx� x0Þk0klû�l ðx0Þ
� �

Wðx� x0Þdx0: ð3:27Þ
After excluding the incident fields u0i ðxÞ and e0ijðxÞ from these equation and Eq. (3.11) and similar equa-
tion for heiji we obtain
û�i ðxÞ ¼ huiðxÞi � p
Z

ojGikðx� x0ÞC1
kjmnðK0

mnrsê
�
rsÞðx0Þ þ q1x

2Gikðx� x0Þðk0klû
�
l Þðx0Þ

h i
Uðx� x0Þdx0;

ð3:28Þ
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ê�ijðxÞ ¼ heijðxÞi � p
Z

P ijklðx� x0ÞC1
klmnðK0

mnrsê
�
rsÞðx0Þ þ q1x

2oðjGiÞkðx� x0Þðk0klû
�
l Þðx0Þ

� �
Uðx� x0Þdx0;

ð3:29Þ

UðxÞ ¼ 1�WðxÞ: ð3:30Þ

Note that function U(x) is equal to zero outside a finite vicinity of the origin (x = 0). The size of this

vicinity has the order of the correlation radius of the random set of inclusions.

3.3. The equations for the effective fields in the case of shear wave propagation

In what follows we will consider the case of shear incident wave u0(x) = U0mexp(ib0n Æ x), where n is
wave normal, b0 is the wave number of the waves in the matrix, U0 is the amplitude of the incident field,
and vectors m and n are orthogonal. For a homogeneous and isotropic random set of inclusions, the mean
fields hui(x)i and heij(x)i are also plane shear waves with the wave number b*, wave normal n and polari-
zation vector U = Um,
huiðxÞi ¼ miU expðib�n � xÞ; heijðxÞi ¼ ib�nðimjÞU expðib�n � xÞ: ð3:31Þ
Because (3.28), (3.29) are equations in convolutions the effective external fields û�i ðxÞ and ê�ijðxÞ are also
plane waves that may be presented in the forms
û�i ðxÞ ¼ miUu
� expðib�n � xÞ; ð3:32Þ

ê�ijðxÞ ¼ E�
ij expðib�n � xÞ; E�

ij ¼ ib�nðimjÞU e
�: ð3:33Þ
Note that amplitudes Uu
� and U e

� in these equations do not coincide because, generally speaking, the con-
ditional mean of a derivative does not coincide with the derivative of a conditional mean
(hoju�i ðxÞjxi 6¼ ojhu�i ðxÞjxi).

Operators K0 and k0 in Eqs. (3.16) and (3.17) are defined from the solution of the one particle problem
(3.1), (3.2). If we change the fields u�i ðxÞ and e�ijðxÞ in Eqs. (3.1) and (3.2) for their mean values û�i ðxÞ and
ê�ijðxÞ; the field ui(x) inside region v with the center at point x0 takes the form
uiðxÞ ¼ k0ik mkUu
� expðib�n � ðx� x0ÞÞ expðib�n � x0Þ

� �
¼ ~k

0

ikðx� x0Þû�kðxÞ;
~k
0

ikðzÞ ¼ ~k
0

ik expðib�n � zÞ½ � expð�ib�n � zÞ; ð3:34Þ
and the solution of Eq. (3.2) for the field eij(x) in v follows from Eq. (3.34) in the form
eijðxÞ ¼ oði~k
0

jÞk
ðx� x0Þ

h i inl
b�

ib�nlmkU e
� expðib�n � xÞ

	 

þ ~k

0

iÞðkdlÞðjê
�
klðxÞ

¼ ~K
0

ijklðx� x0Þê�klðxÞ; ~K
0

ijklðzÞ ¼ oði~k
0

jÞðkðzÞ
h i

inlÞ
1

b�
þ ~k

0

iÞðkdlÞðj: ð3:35Þ
Here, functions ~k
0

ikðzÞ and ~K
0

ijklðzÞ do not depend on the position of the center of the inclusion x0 and can be
found from the solution of the one-particle problem for an inclusion centered at point x = 0.

Let us introduce functions kuikðxÞ and Ke
ijklðxÞ that coincide with functions ~k

0

ikðx� xkÞ and ~K
0

ijklðx� xkÞ in-
side the region vk (k = 1,2,3, . . .) and equal to zero in the matrix. Note that functions kuikðxÞ and Ke

ijklðxÞ
compose stationary random fields. Using these functions the fields ui(x) and eij(x) inside inclusions may
be written in the form
uiðxÞ ¼ kuðxÞû�kðxÞ; eijðxÞ ¼ Ke
ijklðxÞê

�
klðxÞ; x 2 V : ð3:36Þ
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Now the action of the operators K0
ijkl and k0ik on the effective fields ê�klðxÞ and û�kðxÞ in Eqs. (3.24)–(3.27)

may be presented in the forms
K0
ijklê

�
klðxÞ ¼ hKijkle

�
klðxÞjxi ¼ hKe

ijklðxÞjxiê
�
klðxÞ ¼ K

e

ijklê
�
klðxÞ; ð3:37Þ

k0ik û
�
kðxÞ ¼ hkiku�kðxÞjxi ¼ hkuikðxÞjxiû

�
kðxÞ ¼ �k

u
ikû

�
kðxÞ; ð3:38Þ

K
e

ijkl ¼
1

hvi

Z
v

~K
0

ijklðxÞdx
� �

; �k
u
ik ¼

1

hvi

Z
v

~k
0

ikðxÞdx
� �

: ð3:39Þ
Here, K
e

ijkl and
�k
u
ik are constant tensors for any homogeneous random field of inclusions (The averaging in

these equations is taken over the ensemble distribution of sizes of the inclusions). Hence, operators K0 and
k0 are products with constant tensors K

e

ijkl and
�k
u
ik.

Finally, Eq. (3.11) for the mean wave field hui(x)i in the composite and Eqs. (3.26) and (3.27) for the
mean effective fields û�i ðxÞ and ê�ijðxÞ take the forms
huiðxÞi ¼ u0i ðxÞ þ p
Z

ojGikðx� x0ÞC1
kjmnK

e

mnrsê
�
rsðx0Þ þ q1x

2Gikðx� x0Þ�kuklû
�
l ðx0Þ

h i
dx; ð3:40Þ

û�i ðxÞ ¼ huiðxÞi � p
Z

ojGikðx� x0ÞC1
kjmnK

e

mnrsê
�
rsðx0Þ þ q1x

2Gikðx� x0Þ�kuklû
�
l ðx0Þ

h i
Uðx� x0Þdx0; ð3:41Þ

ê�ijðxÞ ¼ heijðxÞi �
Z

P ijklðx� x0ÞC1
klmnK

e

mnrsê
�
rsðx0Þ þ q1x

2oðiGjÞkðx� x0Þ�kuklû
�
l ðx0Þ

� �
Uðx� x0Þdx0: ð3:42Þ
Eqs. (3.40)–(3.42) are equations in convolutions. Therefore, the Fourier transform of these equations
gives us the following system of linear algebraic equations with respect to the Fourier transforms of the
unknown effective fields
huiðkÞi ¼ u0i ðkÞ þ p ikjGikðkÞC1
kjmnK

e

mnrsê
�
rsðkÞ þ q1x

2GikðkÞ�k
u
klû

�
l ðkÞ

h i
; ð3:43Þ

û�i ðkÞ ¼ huiðkÞi � p CU
ijkðkÞC1

kjmnK
e

mnrsê
�
rsðkÞ þ q1x

2GU
ikðkÞ�k

u
klû

�
l ðkÞ

h i
; ð3:44Þ

ê�ijðkÞ ¼ heijðkÞi � PU
ijklðkÞC1

klmnK
e

mnrsê
�
rsðx0Þ þ q1x

2CU
ðijÞkðkÞ�k

u
klû

�
l ðx0Þ

h i
: ð3:45Þ
Here, k is a point of k-space of Fourier transforms, Gik(k) is the Fourier transform of the Green function
Gik(x) defined in Eq. (2.2).
GikðkÞ ¼ L0
ikðkÞ

� ��1
; L0

ikðkÞ ¼ C0
ijklkjkl � q0x

2dik:
(We denote Fourier transform of the functions by the same letter with argument k). The functions GU
ikðkÞ;

CU
ijkðkÞ; PU

ijklðkÞ in Eqs. (3.43)–(3.45) are
GU
ikðkÞ ¼

Z
GikðxÞUðxÞeik�x dx;CU

ijkðkÞ ¼
Z

ojGikðxÞUðxÞeik�x dx; PU
ijklðkÞ ¼

Z
P ijklðxÞUðxÞeik�x dx:

ð3:46Þ

Eqs. (3.44) and (3.45) may be written now in the forms
T iklðkÞê�klðkÞ þ tikðkÞû�kðkÞ ¼ huiðkÞi; ð3:47Þ

PijklðkÞ̂e�klðkÞ þ pijkðkÞû�kðkÞ ¼ heijðkÞi; ð3:48Þ
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where
T iklðkÞ ¼ pCU
ijrðkÞC1

jrmnK
e

mnkl; tikðkÞ ¼ dik þ pq1x
2GU

irðkÞ�k
u
rk; ð3:49Þ

PijklðkÞ ¼ I ijkl þ pPU
ijrsðkÞC1

rspqK
e

pqkl; pijkðkÞ ¼ pq1x
2CU

ðijÞrðkÞ�k
u
rk: ð3:50Þ
Taking into account Eqs. (3.31)–(3.33) we can write for the Fourier transforms of the functions in Eq.
(3.47) and (3.48)
hukðkÞi ¼ ð2pÞ3mkUdðkþ b�nÞ; heijðkÞi ¼ ð2pÞ3ib�nðimjÞUdðkþ b�nÞ; ð3:51Þ

û�i ðkÞ ¼ ð2pÞ3mkUu
�dðkþ b�nÞ; ê�ijðkÞ ¼ ð2pÞ3ib�nðimjÞU e

�dðkþ b�nÞ; ð3:52Þ

where d(k) is Dirac�s delta-function. From these equations and Eqs. (3.47) and (3.48) follows the system
connected scalar amplitudes U ;Uu

� and U e
�

T ðb�ÞU e
� þ tðb�ÞUu

� ¼ U ; ð3:53Þ

Pðb�ÞU e
� þ pðb�ÞUu

� ¼ U : ð3:54Þ

Here, scalar coefficients T, t, P and p are
T ðb�Þ ¼ ib�miT iklðb�Þmknl; tðb�Þ ¼ mitikðb�Þmk; ð3:55Þ

Pðb�Þ ¼ nimjPijklðb�Þmknl; pðb�Þ ¼
1

ib�
nimjpijkðb�Þmk; ð3:56Þ
and functions Tikl(b*), tik(b*), Pijkl(b*) and pijk(b*) are defined in Eqs. (3.49) and (3.50), where vector k has
to be replaced with vector (�b*n).

Resolving the system of equations (3.53) and (3.54) with respect to U e
� and Uu

� we obtain
U e
� ¼

1

D
ðt � pÞU ; Uu

� ¼
1

D
ðP� T ÞU ; D ¼ Pt � Tp: ð3:57Þ
Let us multiply both parts of Eq. (3.43) with function L0
ikðkÞ ¼ C0

ijklkjkl � q0x
2dik. Taking into account

the equations
L0
ikðkÞGkjðkÞ ¼ dij; L0

ikðkÞu0kðkÞ ¼ 0 ð3:58Þ

we obtain
L0
ikðkÞhukðkÞi � p ikjC

1
ijmnK

e

mnrsêrsðkÞ þ q1x
2�k

u
irûrðkÞ

h i
¼ 0: ð3:59Þ
Now with the help of Eqs. (3.51), (3.52), (3.57) and (3.58) we can transform Eq. (3.59) into the dispersion
equation for the wave number b* of the mean wave field. This equation may be written in the standard form
b2
�l�ðb�Þ � x2q�ðb�Þ ¼ 0; ð3:60Þ

l�ðb�Þ ¼ l0 þ
pl1

D
K

eðt � pÞ; K
e ¼ minjK

e

ijklmknl; ð3:61Þ

q�ðb�Þ ¼ q0 þ
pq1

D
�k
uðP� T Þ; �k

u ¼ mi
�k
u
ikmk: ð3:62Þ
Eq. (3.60) is the equation for the unknown effective wave number b* of the mean shear wave propagating
through the composite medium. Note that K

e
and �k

u
are functions of the wave number b*, and these func-

tions have to be found from the solution of the one particle problem (3.1), (3.2). The phase velocity and the
attenuation factor of the mean wave field are connected with the wave number b* by the equations
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v� ¼
x

Reðb�Þ
; c ¼ Imðb�Þ: ð3:63Þ
Note that dispersion equation (3.60) may be obtained by the following hypothesis.
Every inclusion in the composite behaves as an isolated one in the original matrix by the action of external

fields u�i ðxÞ and e�ijðxÞ. These fields are plane waves that are the same for all the inclusions.

This hypothesis is equivalent to the hypotheses H1, H2, H3, but it does not indicate the ways of possible
improvements of the obtained solution in the framework of the EFM. For instance, the local external field
may be chosen more complex than a plane shear wave, and it changes hypothesis H1. Hypothesis of the
quasi-crystalline approximation (H3) may be also changed for a more complex one (see, e.g., Kanaun,
2003), etc.
4. Solution of the one particle problem

Let us consider a shear wave field u*(x) with the wave vector b*e3 and polarization vector e1 (ei is a unit
vector of xi-axis). This field may be presented in the form of a series of spherical vector functions (see
Eringen and Suhubi, 1975)
u�ðxÞ ¼ e1e
ib�x3 ¼

X1
n¼1

inð2nþ 1Þ
nðnþ 1Þ M1

01nðxÞ �
i
b�

N1
01nðxÞ

� �
; ð4:1Þ

M1
01nðxÞ ¼ ehjnðb�rÞ

P 1
nðcos hÞ
sin h

cosu� eujnðb�rÞ
dP 1

nðcos hÞ
dh

sinu; ð4:2Þ

N1
e1nðxÞ ¼ er

nðnþ 1Þ
r

jnðb�ÞP 1
nðcos hÞ cosuþ eh

dP 1
nðcos hÞ
dh

cosu� eu
P 1
nðcos hÞ
sin h

sinu

� �
1

r
d

dr
rjnðb�rÞ½ �:

ð4:3Þ

Here, r = jxj, er,eh,eu are the basic vectors of the spherical coordinate system (r,h,u) with polar axis x3,
jn(z) is the spherical Bessel function and P 1

nðcos hÞ is the Legendre function of order n.
The one particle problem of the EFM is the problem of diffraction of plane wave (4.1) on a spherical

inclusion with elastic moduli k, l and density q embedded in the matrix material with the dynamic charac-
teristics k0,l0,q0. If the inclusion has radius a and is centered at point x = 0, integral equation (3.1) is equiv-
alent to the following system of partial differential equations
lDuti þ ðkþ lÞoiokutk þ qx2uti ¼ l0ðb2
0 � b2

�Þe1i expðib�x3Þ; r 6 a; ð4:4Þ

l0Du
m
i þ ðk0 þ l0Þoiokumk þ q0x

2umi ¼ l0ðb2
0 � b2

�Þe1i expðib�x3Þ; r > a: ð4:5Þ

Here, uti is the displacement vector inside the inclusion, umi is the displacement vector in the matrix, D is the
Laplace operator. These equations differ from the equations of the classical problem of diffraction of a
plane monochromatic wave on a spherical inclusion for their right-hand sides are not equal to zero. The
latter is the consequence of the fact that the wave number b* of the effective (local external) field in the
one particle problem of the EFM does not coincide with the wave number of the matrix b0.

The solution of Eqs. (4.4) and (4.5) may be found by the same method as the solution of the classical
diffraction problem (see Eringen and Suhubi, 1975). Seeking this solution in the form of the following series
ut ¼
X1
n¼1

c0nL
10

e1n þ d 0
nM

10

o1n þ e0nN
10

e1n


 �
þ f�e1 expðib�x3Þ; f� ¼ l0

l
b2
0 � b2

�

b2 � b2
�
; ð4:6Þ
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um ¼
X1
n¼1

cnL
3
e1n þ dnM

3
o1n þ enN

3
e1n þ

inð2nþ 1Þ
nðnþ 1Þ M1

o1n �
i
b�

N1
e1n

� �� �
ð4:7Þ
we satisfy the differential equations and the conditions at infinity for the scattered field. Here
L3
e1n ¼ er

d

dr
½hnða0rÞ�P 1

nðcos hÞ cosuþ eh
dP 1

nðcos hÞ
dh

cosu� eu
P 1
nðcos hÞ
sin h

sinu

� �
hnða0rÞ

r
; ð4:8Þ
M3
o1n and N3

e1n are obtained from M1
o1n and N1

e1n in Eqs. (4.2) and (4.3) by replacing functions jn(b*r) by
hn(b0r), hn(z) is the spherical Hankel function of the first kind. Functions L10

e1n;M
10

o1n and N10

e1n are defined
by the same equations as functions L1

e1n;M
1
o1n and N1

e1n but arguments of Bessel functions should be changed
for ar and br,
a2 ¼ x2q
kþ 2l

; b2 ¼ x2q
l

: ð4:9Þ
Arbitrary constants cn,dn,en and c0n; d
0
n; e

0
n in Eqs. (4.6) and (4.7) have to be found from the conditions on

the boundary of the inclusion and the matrix (r = a).
utðaÞ ¼ umðaÞ; n � rtðaÞ ¼ n � rmðaÞ: ð4:10Þ

These conditions give a system of linear algebraic equations for the arbitrary constants in Eqs. (4.6) and

(4.7). In details this system is presented in Appendix A.
Tensors �k

u
ik and K

e

ijkl in Eqs. (3.37)–(3.42) are expressed via integrals from the solution of the one particle
problem. Let us begin with Eq. (3.39) for �k

u
ik
k
u

ikû
�
k ¼

1

v

Z
v
utui ðxÞ expð�ib�n � xÞdx; ð4:11Þ
Here, utui ðxÞ is given by Eq. (4.6) where vector e1 has to be replaced by mUu
�. After integration in Eq. (4.11)

we obtain
�k
u
ikû

�
k ¼ hû�i ðxÞ or �k

u
ik ¼ hdik; ð4:12Þ

h ¼ � 3

2a

X1
n¼1

ð�iÞnþ1nðnþ 1Þ c0n
f 1
3 ðaaÞjnðb�aÞ

b�a
� iad 0

ngnðb; b�Þ
�

þe0n
jnðbaÞf 1

4 ðb�aÞ
b�a

þ ðb�aÞgnðb; b�Þ
� ��

þ f�; ð4:13Þ

gnðb; b�Þ ¼
1

ðbaÞ2 � ðb�aÞ
2
bajnþ1ðbaÞjnðb�aÞ � b�ajnþ1ðb�aÞjnðbaÞ
� �

: ð4:14Þ
From definition (3.37) of tensor K
e

ijkl follows the equation
K
e

ijklê
�
klðxÞ ¼

1

v

Z
v
oðjutejÞðxÞ expð�ib�n � xÞdx; ð4:15Þ
where utej ðxÞ has form in Eq. (4.6) if vector e1 is replaced with mU e
�.

After calculating the integrals in this equation we obtain
K
e

ijklê
�
klðxÞ ¼ H ê�ijðxÞ or K

e

ijkl ¼ HIijkl; ð4:16Þ
where Iijkl = dikdjlj(ij)(kl) is a unit four rank tensor,



S.K. Kanaun, V.M. Levin / International Journal of Solids and Structures 42 (2005) 3971–3997 3983
H ¼ � 3

2aðb�aÞ
3

X1
n¼1

ð�iÞnþ1nðnþ 1Þ c0nHcn þ id 0
nHdn þ e0nHen

	 

þ f�; ð4:17Þ

Hcn ¼ 2 f 1
1 ðaaÞf 1

7 ðb�aÞ þ f 1
3 ðaaÞf 1

8 ðb�aÞ
� �

þ ðb�aÞ
2f 1

3 ðaaÞf 1
3 ðb�aÞ;

Hdn ¼ �aðb�aÞ jnðbaÞf 1
7 ðb�aÞ þ ðb�aÞ

2gnðb; b�Þ
h i

;

Hen ¼ 2 f 1
2 ðbaÞf 1

7 ðb�aÞ þ f 1
4 ðbaÞf 1

8 ðb�aÞ
� �

þ ðb�aÞ
2 jnðbaÞf 1

4 ðb�aÞ þ ðb�aÞ
2gnðb; b�Þ

h i
:

The coefficients in Eq. (3.57) take the forms
T ¼ �pb�
l1

l0

CUH ; t ¼ 1þ p
q1

q0

b2
0G

Uh; ð4:18Þ

P ¼ 1þ p
l1

l0

PUH ; p ¼ p
b�

q1

q0

b2
0C

Uh; ð4:19Þ
where GU, CU and PU are the integrals given by formulas (A.1.7)–(A.1.13) in Appendix A.
The obtained equations define all the coefficient in the dispersion equations (3.60)–(3.62), and we can go

now to the construction of its solution.
5. Solution of the dispersion equation in the long-wave region

In this section we study the solution of dispersion equation in the long-wave (low-frequency) region
where the wave numbers a0, b0 and b* are small (a0a,b0a,b*a � 1). In this case only main terms in the real
and imaginary parts of the coefficients c0n; d

0
n; e

0
n and functions h and H in Eqs. (4.13) and (4.18) should be

taken into account. As a result we obtain the coefficients h and H in the forms
h � 1

2
ðc01aþ 2e01bÞ ¼ 1þ iðb0aÞ

3 q1

9q0

ð2þ g20Þ; g0 ¼
a0
b0

; ð5:1Þ

H � � i
15b0

c02a
2 þ 3e02b

2
	 


¼ Hs � iðb0aÞ
3Hx; ð5:2Þ

Hs ¼ 1þ 2l1

15l0

ð3þ 2g20Þ
� ��1

; Hx ¼ 2

45
ð3þ 2g20Þ

l1

l0

Hsð Þ2: ð5:3Þ
Let us consider the coefficients T, t, P and p in Eqs. (4.18) and (4.19) in the long-wave limit. With the
accuracy (b0a)

3 we obtain
T ¼ p ¼ 0; ð5:4Þ

and the asymptotics of integrals GU, PU in Eqs. (A.1.7)–(A.1.9) and coefficients P and t take the forms
GU � 1

3
ð2þ g20ÞJ 0 þ ib0

3
ð2þ g30ÞJ ; J 0 ¼

Z 1

0

UðrÞrdr; J ¼
Z 1

0

UðrÞr2 dr; ð5:5Þ

PU � � Ps þ ib3
0JPx

	 

; P s ¼

2ð3þ 2g20Þ
15

; Px ¼ 2ð3þ 2g50Þ
15

; ð5:6Þ
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P � 1� p
l1

l0

ðPs þ ib3
0JPxÞHs � iðb0aÞ

3P sHx


 �
; l1 ¼ l� l0; ð5:7Þ

t � 1þ ip
q1

3q0

ð2þ g30Þb
3
0J ; q1 ¼ q� q0: ð5:8Þ
The effective shear modulus l* and effective density q* in dispersion equation (3.60) in the long-wave
region take the forms
l� ¼ ls � ib3
0pvflx; q� ¼ qs þ ib3

0pvfqx; ð5:9Þ

v ¼ 4

3
pa3; f ¼ 1� 4p

v
pJ ; ð5:10Þ
where ls is the static effective shear modulus of the composite (b0 ! 0), and qs is a ‘‘static’’ density.
ls ¼ l0 þ plR; lR ¼ l1Hs

1� pl1HsP s
¼ 1

l1

þ ð1� pÞ 2ð3þ 2g20Þ
15l0

� ��1

; qs ¼ q0 þ pq1: ð5:11Þ
The factors lx and qx in the imaginary parts of l* and q* in Eq. (5.9) take the following forms
lx ¼ l2
R

3þ 2g50
30pl0

; qx ¼ q2
1

2þ g30
12pq0

: ð5:12Þ
The dispersion equation (3.60) in the long-wave is presented in the form
b2
� ¼ b2

s 1þ ib3
0pvf

lx

ls
þ qx

qs

� �� �
; b2

s ¼
x2qs

ls
: ð5:13Þ
Thus, effective wave number b* is
b� ¼ bs þ ic; ð5:14Þ

where the attenuation factor c takes the form
c ¼ pf b0að Þ4

18a
bs

b0

� �
2

5

l2
R

l0ls
ð3þ 2g50Þ þ

q2
1

q0qs
ð2þ g30Þ

� �
: ð5:15Þ
Eqs. (5.9)–(5.15) for the effective parameters of the composite coincide with the results of Willis (1980)
obtained by the solution of the problem of wave propagation in particulate composites in the long-wave
region.

In Figs. 1 and 2, approximation (5.11) for the effective shear modulus ls of the composites is compared
with the numerical computation of these moduli presented in Segurado and Llorca (2002). Solid line in Fig.
1 is the dependence of ls on volume concentration of inclusions p that corresponds to Eq. (5.11) in the case
of absolutely rigid inclusions, the dashed line presents the numerical results of Segurado and Llorca (2002).
The same dependencies for the material with spherical pores are presented in Fig. 2. The numerical results
of Segurado and Llorca (2002) were obtained by finite element technique applied to the solution of the elas-
ticity problem for the characteristic volume of the composite material. The number of inclusion inside the
characteristic volume and the sizes of finite elements used by the calculations in this work allow us to con-
sider the obtained result as an exact solution of the homogenization problem or being very close to such a
solution. Thus, the graphs in Figs. 1 and 2 may be interpreted as a comparison of the predictions of the
EFM and the exact values of the elastic shear moduli of the composites with spherical inclusions.

Attenuation factor c of the mean wave field in the long-wave region is proportional to factor (b0a)
4

(Rayleigh scattering) and to structural factor f
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Fig. 1. The dependence of the effective shear modulus of the composite with rigid inclusions on the volume concentration of the latter.
Solid line is the prediction of the EFM, line with dots is the results of numerical calculations of Segurado and Llorca (2002).
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Fig. 2. The dependence of the effective shear modulus of the medium with spherical pores on the volume concentration of the latter.
Solid line is the prediction of the EFM, line with dots is the results of numerical calculations of Segurado and Llorca (2002).
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f ¼ 1� 4p
v
pJ ¼ 1� 3p

Z 1

0

UðfÞf2 df; f ¼ r
a
: ð5:16Þ
Factor f as well as function U(r) depends only on geometrical properties of the random field of inclu-
sions. It is shown in Appendix B that factor f is non-negative (f P 0) for any realizable correlation function
of a spatially homogeneous random set of inclusions.

Further we use Percus–Yevick correlation function w(r), (r = jxj) for the construction of function U(r)
and structural factor f. The value of w(r) is the probability density to find a center of an inclusion at point
x if the center of other inclusion is situated in the origin (x = 0). An explicit equation for the Percus–Yevick
correlation function w(r) is presented in Wertheim (1963). The behavior of this functions for p = 0.1,0.3,0.5
is shown in Fig. 3. Function U(r) is connected with function w(r) by the equation
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Fig. 3. The graphs of Percus–Yevick correlation function w(f) for various volume concentrations of inclusions.
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UðrÞ ¼ 1� 1

v2

Z
v0ðxÞdx

Z
wðjx� yjÞv0ðy � zÞdy; r ¼ jzj: ð5:17Þ
Here, v0(x) is the characteristic function of a spherical region of a unit radius centered at point x = 0. The
double integral over 3D-space in this formula may be reduced to a single (one-dimensional) integral (see
Kanaun and Jeulin, 1997). The graphs of function U(r) for various values of p(p = 0.1,0.3,0.5) are pre-
sented in Fig. 4.

After substituting U(r) from Eq. (5.17) into Eq. (5.16) for the factor f we obtain the following equation
f ¼ 1� p 8þ 3

Z 1

2

1� wðfÞð Þf2 df
� �

; f ¼ r
a
: ð5:18Þ
For Percus–Yevick correlation function w(r) structural factor f takes the form (see Twersky, 1975; Willis,
1980)
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Fig. 4. The graphs of specific correlation function U(f) corresponding to the Percus–Yevick correlation function w.
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f ¼ ð1� pÞ4

ð1þ 2pÞ2
: ð5:19Þ
The dependences of the attenuation factor ca/(b0a)
4 calculated from Eq. (5.15) on the volume concen-

tration of inclusions p are presented in Fig. 5. Solid line in this figure corresponds to rigid inclusions,
the dashed line is the case of the porous medium.
6. Solution of the dispersion equation in the short-wave limit

Let us consider the solution of the dispersion equation of the EFM in the short-wave limit. In this case
x,a0,b0 ! 1 and as it follows from Eqs. (4.13) and (4.17) h,H! 0. It is known that in the short-wave limit
the effective wave number of the mean wave field has the form (Waterman and Truel, 1961; Bussemer et al.,
1991; Kanaun, 2000)
b� ¼ Reb� þ ic; ð6:1Þ

where c does not depend on b0, and Reb* = O(b0). It is possible to show that integrals GU, CU and PU in Eq.
(A.1.7)–(A.1.9) in the short-wave limit take the forms
lim
b0!1

b2
0G

Uðb�Þ ¼ b2
0

Z 1

0

eib0rj0ðb�rÞUðrÞdr ¼
1

2
ib0aIðcaÞ; ð6:2Þ

lim
b0!1

PUðb�Þ ¼ lim
b0!1

b0C
Uðb�Þ ¼ ib2

0

Z 1

0

eib0rj1ðb�rÞUðrÞdr ¼
1

2
ib0aIðcaÞ; ð6:3Þ

IðcaÞ ¼
Z 1

0

ecafUðfÞdf; f ¼ r
a
: ð6:4Þ
Here, the limit form of b* (6.1) together with asymptotic formulas j0ðb0rÞ � sinðb�rÞ=b�r;
j1ðb�rÞ � � cosðb�rÞ=b�r for large b* were used. Taking into account these relations we obtain from Eqs.
(3.61) and (3.62)
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l� ¼ l0 þ
pl1

D
H ; q� ¼ q0 þ

pq1

D
h ð6:5Þ

D ¼ 1þ 1

2
ipb0IðcÞK; K ¼ q1

q0

h� l1

l0

H
� �

: ð6:6Þ
Note that K/D! 0 when x ! 1.
It follows from Eqs. (3.60), (6.5) and (6.6) that in the short-wave limit the equation for the effective wave

number b* may be written as
b2
� ¼

q0x
2

l0

1þ p
K
D

� �
; or b� ¼ b0 1þ p

K
2D

� �
: ð6:7Þ
Let us consider the short-wave limit of function K in Eq. (6.6). It follows from Eqs. (4.13) and (4.17) that
for large values of x (or b0) the equation for b0K takes the form
b0K ¼ b0

q1

q0

h0 �
l1

l0

H 0

� �
þ b0

q1

q0

� l1

l0

� �
l0

l
b2
0 � b2

�

b2 � b2
�
: ð6:8Þ
Here, h0 and H0 are the same as in Eq. (A1.18) (see Appendix A). As it follows from Eq. (A1.19) the limit
value of the first term in the right-hand side of Eq. (6.8) when x ! 1 is equal to 3i/2a, and the limit of the
last term in this equation is �2ic. As a result, we obtain the short-wave limits of functions b0K and D in Eq.
(6.7) in the form
lim
x!1

b0K ¼ 2i
a

3

4
� ca

� �
; lim

x!1
D ¼ 1� p

3

4
� ca

� �
IðcaÞ: ð6:9Þ
Thus, in the short-wave limit Eq. (6.7) takes the form
b�a ¼ b0aþ p
i 3

4
� ca

	 

1� p 3

4
� ca

	 

IðcaÞ

: ð6:10Þ
It follows from this equation that the phase velocity of the mean wave field coincides with the velocity of
shear waves in the matrix material
v� ¼
x

Reðb�Þ
¼ x

b0

¼ v0; ð6:11Þ
and from Eqs. (6.1) and (6.10) we obtain that the short-wave limit �c of the attenuation factor c is
�ca ¼ Im b�að Þ ¼ p
3

4
� �ca

� �
1� p

3

4
� �ca

� �
Ið�caÞ

� ��1

: ð6:12Þ
(6.12) is in fact the equation for the short-wave limit �c of the attenuation factor. For small volume con-
centrations of inclusions (p � 1) the value of �c is
�ca ¼ 3

4
p:
The graph of the function �ca for the Percus–Yevick correlation function is presented in Fig. 6.
Thus, the limit value of the attenuation factor depends neither on the frequency of the incident field nor

on the properties of the inclusions and the matrix, and �ca is only a function of the inclusion volume con-
centration p and their distribution in space (for large p it depends on the correlation function U(r) via inte-
gral I(ca) in Eq. (6.4)). This result may be interpreted as follows. In the short-wave limit the geometrical
optics interpretation may be used for the description of the mean wave field in the composite. This field
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Fig. 6. The dependence of the short-wave limit �c of the attenuation factor of the mean wave field on the volume concentration of
inclusions p.
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may be considered as a set of independent beams propagating through the medium. Because of existence of
a continuous component (matrix) the phase velocity of the mean field should coincide with the wave veloc-
ity in the matrix. The attenuation factor c in the short-wave limit does not depend on the frequency and
properties of inclusions and is only a function of a number of scatterers on a unit length (for electromag-
netic waves see similar results in Bussemer et al. (1991) and Kanaun (2000)). The latter is the consequence
of the extinction paradox for the value of the total scattering cross section of the inclusion in the short-wave
limit (see Appendix A).
7. Numerical solution of the dispersion equation

Numerical analysis of dispersion equation (3.60) discovered several branches of its solutions. Three dis-
persion curves (different branches of the solution of the dispersion equation in the region 0 < b*a,b0a < 3)
for the medium with hard and heavy inclusions (q/q0 = 10,E/E0 = 50,m = 0.3,m0 = 0.4,p = 0.3) are pre-
sented in Fig. 7. The dependencies of the real parts of the effective wave number on the wave number of
the matrix (Reb*(b0)) are in the left figure, and the dependences of the imaginary parts Imb*(b0) are in
the right figure. In the long- and short-wave regions, the behavior of branch 1 coincides with the asymptotic
solutions obtained in the previous sections. This branch may be called the acoustical (quasiacoustical)
branch. The second branch (2) is lower than the acoustical branch and starts with a finite values of fre-
quency (b0a � 0.7); this branch may be called the optical (quasioptical) branch. The third branch (3) is
higher than the acoustical branch and starts with the point that correspond to the root of Eq. (3.60) for
x = 0. The existence of such non-trivial roots of the dispersion equations is typical for a medium with
microstructure (see Kunin, 1980, pp. 51–58; 1983, pp. 33–37). For the quasi-continuum models presented
in Kunin (1980, 1983) these roots are imaginary numbers. The non-trivial root of Eq. (3.60) for x = 0
turned to be a complex number with a non-zero real part. The attenuation factors ca of the waves that
correspond to branches 2 and 3 are several orders of magnitude more than the attenuation factors of
the acoustic waves and are about 2 along these branches. Thus, these waves are practically attenuate on
the length of the diameter of inclusions, and it is difficult to observe these waves in experiments. Note
that the quasi-optical branches were found out in some suspensions of elastic particles (see Sheng et al.,
1994).
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The following iterative procedure was used for the numerical solution of dispersion equation (3.60)
bðnÞ
� ¼ bðn�1Þ

� � e bðn�1Þ
� � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q� bðn�1Þ

�


 �
l� bðn�1Þ

�


 �
vuuut

2
64

3
75: ð7:1Þ
Here, index n corresponds to the number of the iteration, parameter e (jej < 1) is to be chosen for conver-
gence of the iterative process. Functions q*(b*) and l*(b*) are defined in Eq. (3.61), (3.62). As a ‘‘zero’’ iter-
ation a simple additive law of the dependence of the effective parameters of the composite on the
microstructure was assumed. Such an iterative procedure was used for the construction of the acoustical
branch of dispersion equation (3.60). The solutions corresponded to the second and third branches were
found by seeking direct minima of the function
F ðb�Þ ¼ bðn�1Þ
� � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q� bðn�1Þ

�


 �
l� bðn�1Þ

�


 �
vuuut

�������
������� ð7:2Þ
in the complex plane (Reb*, Imb*). Note that in the region of middle wave lengths and for high volume con-
centrations of inclusions, the effective wave numbers of these three branches turn to be close, and the iter-
ative procedure (7.1) may converge to a solution corresponded to branch 2 or 3. In this region these three
branches should be carefully separated.

The results of calculation of the phase velocities and attenuation factors of shear waves that correspond
to the acoustical branch of the solutions of the dispersion equation are presented in Figs. 8 and 9. The cases
of composites with hard and heavy inclusions (q/q0 = 10, E/E0 = 50, m = 0.3, m0 = 0.4, and E,m and E0,m0
are Young moduli and Poisson ratios of the inclusions and the matrix) and volume concentrations of inclu-
sions p = 0.1 and p = 0.3 are in Fig. 8. The considered region of wave number b0 covers the long-, middle-
and short-regions (0 < b0a < 100, logarithmic scale is used in Fig. 8). More detailed behavior of these
dependences in the region (0 < b0a < 3) is shown in Fig. 9, where non-logarithmic scale is used. The dashed
horizontal lines in these figures are the short-wave asymptotics of the velocities and attenuation factors of
waves obtained in Section 6 (Eqs. (6.11) and (6.12)).
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The results of calculation of the phase velocities and attenuation factors of shear waves for the composite
with soft and light inclusions (q/q0 = 0.1,E/E0 = 0.02,m = 0.3,m0 = 0.4) are presented in Fig. 10. The graphs
in this figure are constructed with the step 0.25 in the logarithmic scale and don�t reflect small-scale oscil-
lations that are essential in this case. Detailed dependences of the velocities and attenuation factors on the
mean wave field on frequency (b0a) in the region 0 < b0a < 4 are presented in Fig. 11. Note that in some
region of middle wave lengths (0.6 < b0a < 1.8 for p = 0.3) the imaginary part of the solutions of dispersion
equation (3.60) (attenuation factor) turns to be negative (the dashed part of the curve in the right-hand side
of Fig. 10 corresponds to negative values of the attenuation factors). In this region the method overestimate
interactions between inclusions, and its predictions for the attenuation factors become physically not cor-
rect. For small volume concentrations of inclusions (p < 0.1) the attenuation factor is positive. For hard
and heavy inclusions the method predicts positive values of the attenuation factors for all frequencies of
the incident field and volume concentrations of inclusions.
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8. Conclusion

The version of the EFM developed in this work allows us to obtain the dispersion equation for the wave
numbers of the mean elastic shear wave fields in two phase particulate composites. This dispersion equation
serves for all frequencies of the incident field, arbitrary properties of the phases and their volume
concentrations.

In the long-wave region, the method gives physically correct values of the velocities and attenuation fac-
tors of the mean wave field in the composites. Its predictions of the effective shear moduli of particulate
composites correspond to the numerical calculations of the latter in Segurado and Llorca (2002) and to
experimental data (see Kanaun and Levin, 1994). The error of the EFM in this region is essential if the
inclusions are much harder than the matrix, and its volume concentration is more than 0.3 (see Fig. 1).

In the middle wave region, the method gives physically reasonable values of the phase velocities of the
mean wave fields but it predicts negative values of attenuation factors for the composites with high volume
concentrations of the inclusions that are much softer and lighter than the matrix. Apparently, the picture of
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the detailed wave field in the middle wave region is very complex and cannot be described by relatively sim-
ple hypotheses of the EFM.

In the short-wave region the method gives physically correct results for all types of inclusions.
In the framework of the method, it is possible to change its main hypotheses for more appropriate ones.

In particular, the effective field that acts on every inclusion in the composite may be taken more complex
than a plane wave as it was assumed in hypothesis H1. Hypothesis H3 of quasi-crystalline approximation
(see Eqs. (3.24) and (3.25)) may be also changed for the following
hKijkle
�
klðxÞjx; x0; x00i ¼ hKijkle

�
klðxÞjx; x0i; ð8:1Þ

hkiku�kðxÞjx; x0; x00i ¼ hkiku�kðxÞjx; x0i: ð8:2Þ

This hypothesis closes the chain of equations for the many point conditional means of the local external

field on the second step (see details in Kanaun, 2003).
Comparison of the EFM with other self-consistent methods (various versions of the effective medium

method (EMM)) shows that these methods give close results in the long-wave region and for small volume
concentrations of inclusions, but in the middle and short-wave regions the predictions of the EFM and
EMMmay deviate essentially. These predictions are also different for the composites with high volume con-
centrations of contrast inclusions (see the comparison of the EFM and EMM predictions in the case of
shear wave propagation in fiber composites in Kanaun and Levin (2003), the analysis of various versions
of the EMM is presented in Kanaun et al. (2004)). The main advantage of the EFM in comparison with
various versions of the EMM is the possibility to take into account the influence of peculiarities in spatial
distributions of inclusions on the mean wave field in composites. For electromagnetic waves, such influence
was studied in Kanaun and Jeulin (1999) and Kanaun (2000). It was shown in the last work that the exis-
tence of photonic gaps in the frequency region in composite materials with regular microstructures may be
described by the considered version of the EFM.
Appendix A. One-particle problem of the EFM for shear wave propagation

A.1. Equations for the constants in the solution of the one particle problem

The constants in the solution (4.6) and (4.7) of the one particle problem are to be found from the bound-
ary conditions (4.10). These conditions give the following system of linear algebraic equation for the
constants
Ln
cn
en

� �
� L0

n

c0n
e0n

� �
¼ inþ1 2nþ 1

nðnþ 1Þ
1

b�
ð1� f�Þ

f 1
2 ðb�aÞ
f 1
4 ðb�aÞ

 !
ðA:1:1Þ

Mn
cn
en

� �
� l
l�

M0
n

c0n
e0n

� �
¼ inþ1 2nþ 1

nðnþ 1Þ
1

b�
1� l

l0

f�
� �

f 1
6 ðb�aÞ
f 1
8 ðb�aÞ

 !
; ðA:1:2Þ
where the matrices Ln and Mn are
Ln ¼
f 2
1 ðk�aÞ f 2

2 ðj�aÞ
f 2
3 ðk�aÞ f 2

4 ðj�aÞ

 !
; Mn ¼

f 2
5 ðk�aÞ f 2

6 ðj�aÞ
f 2
7 ðk�aÞ f 2

8 ðj�aÞ

 !
: ðA:1:3Þ
L 0
n andM 0

n in Eqs. (A.1.1) and (A.1.2) have forms (A.1.3) if radial function f 2
mða0aÞ; f 2

mðb0aÞ are replaced
with f 1

mðaaÞ; f 1
mðbaÞ. The system for the constants dn and d 0

n has the form
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hnðb0aÞdn � jnðbaÞd 0
n ¼ �in

2nþ 1

nðnþ 1Þ ð1� f�Þjnðb�aÞ; ðA:1:4Þ
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l
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f 1
6 ðbaÞd 0

n ¼ �in
2nþ 1

nðnþ 1Þ 1� l
l0

f�
� �

f 1
6 ðb�aÞ: ðA:1:5Þ
The radial functions f i
mðqrÞ; (m = 1,2, . . ., 9, i = 1,2) in (A.1.1)–(A.1.5) have forms
f i
1ðarÞ ¼ nyinðarÞ � aryinþ1ðarÞ; f i

2ðbrÞ ¼ nðnþ 1ÞyinðbrÞ;
f i
3ðarÞ ¼ yinðarÞ; f i

4ðbrÞ ¼ ðnþ 1ÞyinðbrÞ � bryinþ1ðbrÞ;

f i
5ðarÞ ¼ n2 � n� ðbrÞ2

2

 !
yinðarÞ þ 2aryinþ1ðarÞ;

f i
6ðbrÞ ¼ nðnþ 1Þ ðn� 1ÞyinðbrÞ � bryinþ1ðbrÞ

� �
;

f i
7ðarÞ ¼ ðn� 1ÞyinðarÞ � aryinþ1ðarÞ;

f i
8ðbrÞ ¼ n2 � 1� ðbrÞ2

2

 !
yinðbrÞ þ bryinþ1ðbrÞ:

ðA:1:6Þ
In these equations wave numbers a and b are without indices for the fields inside the inclusion, they have
index ‘‘0’’ for the fields in the matrix and ‘‘*’’ for the medium with the effective properties. If i = 1 functions
y1nðzÞ are spherical Bessel functions jn(z), for i = 2 these functions are Hankel functions hn(z).

A.2. Integrals in Eqs. (4.18) and (4.19)

The integrals in Eqs. (4.18) and (4.19) depend on the specific correlation function U(r) and have forms
GU ¼
Z 1

0

G1ðrÞj0ðb�rÞ þ G2ðrÞ
j1ðb�rÞ
b�r

� �
UðrÞrdr; ðA:1:7Þ

CU ¼ �
Z 1

0

G2ðrÞ j1ðb�rÞ �
4j2ðb�rÞ

b�r

� �
þ G3ðrÞj1ðb�rÞ þ G4ðrÞ

2j2ðb�rÞ
b�r

� �
UðrÞdr; ðA:1:8Þ

PU ¼ �
Z 1

0

G2ðrÞ j0ðb�rÞ �
9j1ðb�rÞ

b�r
þ 32j2ðb�rÞ

ðb�rÞ
2

" #
þ G3ðrÞ j0ðb�rÞ �

j1ðb�rÞ
b�r

� �(

þ4G4ðrÞ
j1ðb�rÞ
b�r

� 4j2ðb�rÞ
ðb�rÞ

2

" #)
U0ðrÞdr � b�C

U: ðA:1:9Þ
Here, the functions Gi(r) are
G1ðrÞ ¼
1

ðb0rÞ
2

ib0r � 1þ ðb0rÞ
2

h i
eib0r � ðia0r � 1Þeia0r

n o
; ðA:1:10Þ

G2ðrÞ ¼
1

ðb0rÞ
2

3ðia0r � 1Þ þ ða0rÞ2
h i

eia0r � 3ðib0r � 1Þ þ ðb0rÞ
2

h i
eib0r

n o
; ðA:1:11Þ

G3ðrÞ ¼
1

ðb0rÞ
2

3ð1� ib0rÞ � 2ðib0rÞ
2 þ iðb0rÞ

3
h i

eib0r � 3ð1� ia0rÞ � ða0rÞ2
h i

eia0r
n o

; ðA:1:12Þ
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G4ðrÞ ¼
1

ðb0rÞ
2

9ð1� ia0rÞ � 4ða0rÞ2 þ iða0rÞ3
h i

eia0r � 9ð1� ib0rÞ � 4ðb0rÞ
2 þ iðb0rÞ

3
h i

eib0r
n o

:

ðA1:13Þ
A.3. The total scattering cross-section

The wave field outside an isolated inclusion consists of two parts: the incident field and the field scattered
on the inclusion. Let us consider the diffraction of the plane shear wave propagating in the original matrix
(b* = b0) on an isolated spherical inclusion. The field usi ðxÞ scattered on the inclusion is the integral term in
Eq. (3.1), and thus usi ðxÞ has the form
usi ðxÞ ¼
Z
v

ojGikðx� x0ÞC1
kjmnemnðx0Þ þ q1x

2Gikðx� x0Þukðx0Þ
h i

dx0: ðA:1:14Þ
Because integration here spreads over the region v occupied by the inclusion only, Eq. (A.1.14) defines
the scattered field via the fields ui and eij inside the inclusion.

Let us consider the long-distant asymptotic of the scattered field. Using a standard technique of evalu-
ation of the integral in Eq. (A.1.14) (Bohren and Huffman, 1983) we obtain that for large jxj the following
equation holds
usi ðxÞ � Aiðn̂Þ
eia0r

r
þ Biðn̂Þ

eib0r

r
; n̂ ¼ x

jxj ; r ¼ jxj: ðA:1:15Þ
Here, Aiðn̂Þ and Biðn̂Þ are the vector amplitudes of the longitudinal and shear waves, scattered in the direc-
tion n̂. These amplitudes are expressed via the displacement and strain fields inside the inclusion by the fol-
lowing equations
Aiðn̂Þ ¼ n̂in̂kfkða0n̂Þ; Biðn̂Þ ¼ ðdik � n̂in̂kÞfkðb0n̂Þ; ðA:1:16Þ

fkðqn̂Þ ¼
q2

4pq0x2
q1x

2

Z
V
ukðx0Þ expð�iqn̂ � x0Þdx0 þ iqnlC

1
lkmn

Z
V
emnðx0Þ expð�iqn̂ � x0Þdx0

� �
;

ðq ¼ a0; b0Þ:
The normalized total scattering cross-section QT(x) of the inclusion of a unit radius in the case of trans-
versal wave propagation is defined by the equation
QT ðxÞ ¼
4

b0

Im m � BðnÞ½ �; ðm � n ¼ 0Þ: ðA:1:17Þ
Here, n is the wave normal, m is the direction of the polarization vector.
Thus, the scattering cross-section is expressed via the forwarded scattering amplitude B(n) (the analogue

of the ‘‘optical theorem’’ in electromagnetics (see Bohren and Huffman, 1983). Eqs. (A.1.16) and (A.1.17)
together with Eqs. (4.12), (4.13) and (4.17) give
QT ¼ 4

3
b0Im

q1

q0

h0 �
l1

l0

H 0

� �
; ðA:1:18Þ
where h0 and H0 coincide with h and H in Eqs. (4.13) and (4.17) when b* = b0.
It is possible to show that the short-wave limit of QT(x) when x! 1 takes the form (paradox of

extinction)
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lim
x!1

QT ðxÞ ¼ 2: ðA:1:19Þ
This limit does not depend neither on the properties of the inclusion nor on the properties of the
matrix.
Appendix B. Structural factor f in Eq. (5.15) for the attenuation in the long-wave region

Consider a spatially homogeneous random set of spherical inclusions of unit radii (a = 1) in 3D-space,
and let V(x) be the characteristic function of the region occupied by the inclusions. The covariance
S2(x) = hV(y)V(y + x)i of the random function V(x) is connected with the correlation function U(jxj) in
Eqs. (3.30) and (3.22) by the relation
S2ðxÞ ¼
3p
4p

S0ðjxjÞ þ p2ð1� UðjxjÞÞ; ðB:1Þ
where S0(jxj) is the volume of intersection of two spheres of unit radii if jxj is the distance between its cen-
ters. It is shown in Torquato (1999) that for any realizable random function V(x) the following inequality
holds
Z

S2ðxÞ � p2
� �

dx P 0: ðB:2Þ
After substituting in this equation function S2(x) and taking into account that �S0(jxj)dx = 4p/3 we
obtain
Z

S2ðxÞ � p2
� �

dx ¼ 4

3
pp � p2

Z
UðjxjÞdx ¼ 4

3
pp 1� 3p

Z 1

0

UðrÞr2 dr
� �

¼ 4

3
ppf : ðB:3Þ
This equation together with Eq. (B.2) show that the structural factor
f ¼ 1� 3p
Z 1

0

UðfÞf2 df ðB:4Þ
is a non-negative number for any realizable homogenous distribution of inclusions in space.
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